
CIS 130 - Final Examination Review Suggestions p. 1

CIS 130 Final Examination Review Suggestions

* last modified: 12-07-05

* you may bring into the final exam a single piece of paper (8.5" by 11") on which you
have handwritten whatever you wish. This paper must include your name, it must be
handwritten by you, and it will not be returned.

Other than this piece of paper, the exam is closed-note, closed-book, and closed-
computer, and you are expected to work individually.

(Studying beforehand in groups is an excellent idea, however.)

* final is CUMULATIVE!
* if it was fair game for exams #1 or #2, it is fair game for the final;

* Thus, using the posted review suggestions for exams #1 and #2 in your studying
for the final would be a good idea. (Note that they are still available from the
public course web page, under "Homeworks and Handouts".)

* studying your Exam #1 and Exam #2 would also be wise.

* there may indeed be similar styles of questions on the final as on those exams.

* IN GENERAL...
* Anything that has been covered in assigned reading is fair game;
* Anything that has been covered in lecture is fair game;
* Anything covered in a course handout is fair game;
* Anything covered in a lab exercise or lecture exercise or homework

assignment is ESPECIALLY fair game.

* But, the Exam #1 Review Suggestions, Exam #2 Review Suggestions, and these
review suggestions provide a quick overview of especially important material.

* You are expected to follow course style standards in your exam answers, and there
may be exam questions about course style standards as well.

* You should still be comfortable with the design recipe for functions, and should be
able to fill in the opening comment block "templates" we've been using
appropriately.

* note that answers may lose points if they show a lack of precision in terminology;
for example, if I ask for a literal or an expression and you give an entire statement,
instead; or, if a statement is requested that requires a semicolon, and it is not ended
with one.



CIS 130 - Final Examination Review Suggestions p. 2

* high points from the material SINCE Exam #2:

* Given a .h file template (such as that on the public course web page) or an example
of a .h file, you should be able to write a .h file for another auxiliary function.

* at this point, you have written "pure" functions that accept parameters and return a
result;

you have also written C++ main functions, as well as auxiliary functions that are not
so "pure" (they may have side-effects, they may not return anything, they may
require no parameters, they may change the values of pass-by-reference parameters,
etc.!)

* you should know the difference between a function returning something and
function printing something to the screen; you should be able to write functions
that can do either, depending on what is specified.

* you should know the difference between a function accepting something as a
parameter and a function prompting a user for input (and then reading in such
input); you should be able to write functions that can do either, depending on
what's specified.

* you should know the difference between an expression and a statement; you
should know how a statement is terminated in C++.

* Given a function header, you should know how to then write a "legal" call to
that function;
* If a function is a void function, how is it called?

* If a function accepts no parameters, how is it called?

* If a function returns a value, how is it (typically) called?

* If a function expects one or more parameters, how is it called?

* What statement is used to perform interactive input into a C++ program? What
statement is used to perform interactive or screen output from a C++ program?

* Be prepared to give the precise output of fragments of C++ code; you should be
comfortable knowing how cout will "behave" with endl's, literals, and other
expressions.

* You may also be expected to modify existing code, add to existing code, and/or
correct erroneous code.



CIS 130 - Final Examination Review Suggestions p. 3

* know what an algorithm is; you know what pseudocode is.

* you are expected to be comfortable with C++ string literals (anything written within
double quotes);

* although you now know that you CAN declare a string variable by using either
the type string (for the standard string class, along with #include <string>) or
char [size] (for the old-style C string), I will avoid requiring you to use this on
the final examination.

* note that C++ string literals are old-style C strings, but can be assigned to string
variables (C++ will convert them as part of the assignment). However, passing
them as parameters is another matter...! (sigh!)

* the char type

* how do you write a char literal?

* how do you declare a variable of type char?

* you should be able to write a function that takes a char parameter; you should
be able to write a function that returns a value of type char. You should be able
to declare a variable of type char, and should be able to set a char variable's
value appropriately.

* switch statement

* another C++ statement that implements a kind of branch structure!

* what is the syntax of the C++ switch statement? What are its semantics?

* should be very comfortable with the course-expected indentation for switch
statements.

* what is the purpose of break within a switch statement? What happens when it
is omitted?

* what are legal types for the control expression and the case expressions within a
switch statement?

* be comfortable designing, reading, and writing switch statements; you should
be able to read a switch statement, and tell what it is doing; you should be able
to give its output.



CIS 130 - Final Examination Review Suggestions p. 4

* for statement

* another C++ statement that implements a kind of repetition structure!

* what is the syntax of the C++ for statement/for loop? What are its semantics?

* should be very comfortable with the course-expected indentation for for
statements/for loops;

* when are for loops appropriate? Should be able to decide when a while loop is
more appropriate, and when a while loop is more appropriate;

* you should be able to convert from a count-controlled while loop to the
equivalent for-loop, and vice versa;

* be comfortable designing, reading, and writing for loops; you should be able to
read a for loop, and tell what it is doing; you should be able to give its output.

* arrays

* what is an array? (we'll be sticking with one-dimensional arrays...)

* expect to have to read, write, and use arrays; you should be comfortable with
array-related syntax and semantics, and with common "patterns" for using
arrays.

* what 3 pieces of information does the compiler need to know to declare an
array? how do you declare an array in C++?

* how can you initialize an array? (there is more than one way...)

* what is an array index? what is the size of an array? if you know an array's size,
what are the indices of that array? what is the type of an array?

* how do you write an expression representing a single element in an array? how
do you write an expression representing the entire array?

* how do you pass an array as an argument? how do you declare an array as a
parameter?

* how can you do something to every element within an array? how can you use
every element within an array? what particular statement is especially useful in
doing such actions?



CIS 130 - Final Examination Review Suggestions p. 5

* prefix increment operator, postfix increment operator

* What are the prefix and postfix increment operators (++)? How are they
written? Where are they written? What are their effects and their semantics?

* Be able to accurately read, write code fragments containing
them;

* (You should be able to handle the prefix and postfix decrement operators (--)
also.)

* +=, -=, *=, /=

* What do +=, -= *=, /=, %= mean? How are they used? What are their effects
and semantics?

* Be able to accurately read, write code fragments containing them, too;

* pass-by-value and pass-by-reference

* What is a pass-by-value parameter? What is a pass-by-reference parameter?
How can you tell them apart? What is the difference between them? What is the
difference in the possible *arguments* between pass-by-value and pass-by-
reference parameters?

* EXPECT at least one question involving pass-by-value and pass-by-reference
parameters.

* input parameters, output parameters, input/output parameters --- what are they?
for each, what, in general, type of parameter passing is most appropriate?

* in terms of class style standards, when is it more appropriate to use pass-by-
reference? when is more appropriate to use pass-by-value?


