CIS 130 - Homework #6 p. 1
Fall 2005

CIS 130 - Intro to Programming - Fall 2005
Homework Assignment #6

HW #6 PART 1 is due by 12:00 NOON on Wednesday, October 19, 2005;
HW #6 PART 2 is due by 12:00 NOON on Friday, October 21, 2005

Week "8" Lab Exercise - there is NO Week "8" Lab Exercise
Note: when I tried running expressions such as:
is_legal PAT score(199) == false

...using expr_play, it worked just fine. However, funct play0, funct playl, and funct play2
were using some obsolete code in their running-expressions sections. Since these have now
been fixed, please re-copy them and make sure that you are running the 10-12-05 version
(the opening message includes the version date):

(make sure you are in your home directory on cs-server...)
cp ~stl0/bin/funct play0 bin

cp ~stl0/bin/funct playl bin

cp ~stl0/bin/funct play2 bin

chmod 700 bin/funct play*

Now, expressions such as that above should work in the funct_play* family of tools, too
(assuming you have answered the opening questions appropriately, of course).

HOMEWORK #6

You are to work individually on this assignment.

PART 1: (30% of the HW #6 grade) Create a file 130hw6_partl.txt on cs-server. Inside this file,
type the following:

your Contract for the function you are to write for problem #1 below;

your Examples part of the design recipe for any one of the functions that you are to write for
problem #2 below;

your Contract for overtime owed in problem #4 below;

your Contract for workOut in problem #5 below.

(You may decide to write auxiliary functions in the course of some of these problems; this time,
those contracts are not required to be turned in as part of Part 1. Only the above pieces are
required for Part 1.)

You must submit this file using ~st10/130submit (typed at the cs-server prompt, from the
directory where your 130hw6_partl.txt file resides!!) by 12:00 noon on Wednesday, October
19th to receive any credit for Part 1 of HW #6.

PART 2: (70% of the HW #6 grade) Finish the problems below. For all except problem #3, you
must enter your functions using an appropriate choice of the funct_play* tools (remembering
that, except as noted, all design recipe elements ARE expected and required), and test them using
either funct_play* or expr_play.

CIS 130 - Homework #6 p.2
Fall 2005

When you are ready, you must submit:
* problem #3's 130hw06_num3.txt file;

* all of your .cpp and .h files for:
* problem #1's function;
* problem #2's three functions;
* problem #4's overtime_owed function (and any new auxiliary functions, besides
worked overtime, that you use, if any)
* problem #5's workOut function (and any auxiliary function that you use, if any)

...using ~st10/130submit. These must be submitted by 12:00 noon on Friday, October 21st to
receive any credit for Part 2 of HW #6.

REMINDERS:

* You are now REQUIRED to use the program design recipe for all functions, from here on
out, and your functions need to each include the program design recipe elements (including
contract, purpose, and specific examples) unless explicitly stated otherwise.

* When possible, you should write your Examples using == notation, as discussed in lecture.

* You are expected to use bool rather than int for Boolean situations, and you are expected to
write true and false instead of 1 and 0 for logical literal values (again, as discussed in
lecture).

* You are expected to test all Examples using funct play* or expr play; you may of course
run as many additional testing calls as you wish.

1. Trying boolean functions, part 1 (adapted from Exercise 4.2.3, pp. 31-32. You may want to
look at this, as it provides a useful example and some good "set-up".)

Consider the following equation (written in mathematical notation, *not* in C++ syntax):
4-n*+6-n+2=462

Write a boolean function that will return true if a value n satisfies this equation, and will
return false if it does not. Because of the nature of this particular function, named constants
are not required, and I'll be expecting generic names for the function and for its parameter.
Also, you do not have to have an Examples section for this function; however, you should
test it on the values 10, 12, and 14 using either one of the funct play* tools or expr_ play.

(You DO need to follow the rest of the design recipe...)

2. Trying boolean functions, part 2 (adapted from Exercise 4.2.2, p. 30): use funct_playl or
funct_play2 to translate the following intervals on the real number line into C++ functions
that each expect a floating-point number as its parameter and returns true if that number is in
the interval shown and returns false if that number is outside the interval.

Because of the nature of these particular functions, named constants are not required, and I'll
be expecting generic names for the functions and for each one's parameter. You do need an

CIS 130 - Homework #6 p.3
Fall 2005

appropriate Examples section for each, however, with a sufficient selection of examples as
discussed in lecture. And, they should be expressed using ==.

(Note that, in a "real" problem involving an interval, the "boundaries" would likely have
meanings such that named constants would be reasonable and useful.)

(a) the interval (3,7]:

(¢) the range of numbers outside of [1,3].

3. Create a file 130hw06_num3.txt. In it, type answers to the following:

(a) (adapted from Exercise 4.2.2, p. 31)
Consider the following number line template:

And, consider how the intervals were depicted on such number lines in problem #2,
above, and in the reading packet.

Type out intervals depicted on number lines that correspond to the following functions:

al. bool inIntervall (double num)
{
return (-3 < num) && (num < 0);

}

a2. bool inInterval? (double num)
{

return (num < 1) || (num > 2);

}

CIS 130 - Homework #6 p. 4
Fall 2005

a3. bool inInterval3 (double num)
{

return ! ((1 <= num) && (num <= 5));

}
(b) Type out answers for Exercise 4.3.1, pp. 35-36. (Be sure to answer both parts.)
4. Consider the function worked_overtime from HW #5.

Use this function in another function, overtime owed. This function expects, as its
parameters, the number of hours worked, and the overtime rate of pay. If the number of
hours worked exceeds 40, then overtime owed should return how much overtime wages are
due in this case --- overtime wages are computed by multiplying JUST the hours over forty
by the overtime rate of pay. But, if no overtime was worked, then the function should return
0 (no overtime is owed in this case).

For example, overtime_owed(43, 12.50) == 37.5, because there are 3 overtime hours at
12.50 overtime per hour. But, overtime owed(37, 15.00) == 0, because no overtime wages
are owed for this case.

Carefully note the following requirements:
* you must appropriately call your worked_overtime function from HW #5.
* you must use an if-statement appropriately in your solution.

* make sure that your named constant for 40 hours a week being the "boundary" for
overtime is included in your worked_overtime.h file. (If it wasn't there before --- put it
there now!)

Then, you will also be able to use it in overtime owed without re-declaring it. And,
you should do so.

5. (Adapted from Keith Cooper's section of Rice University's COMP 210, Spring 2002)
Conditionals (and Pizza Economics)

In class, we have developed a function intended to deal with some of the economic aspects
of eating pizza. Our earlier function, however, ignores an important consequence of
increased pizza consumption —the need for additional exercise.

Develop a function workOut that computes the number of hours of exercise required to
counter the excess fat from eating pizza. workQut expects as its parameter a number that
represents daily pizza consumption, in slices, and returns a number, in hours, that represents
the amount of exercise time that you need.

For a daily intake of : You need to work out for :
0 slices 1/2 hour
1 to 3 slices 1 hour

>3 slices 1 hour +1/2 hour per slice above 3

