
CIS 130 - Homework #9 p. 1
Fall 2005

CIS 130 - Intro to Programming - Fall 2005
Homework Assignment #9 - REVISED #5 on 11-07-05

Homework #9:
HW #9 PART 1 is due by 12:00 NOON onWednesday, November 9, 2005;
HW #9 PART 2 is due by 12:00 NOON on Friday, November 11, 2005

Week "11" Lab Exercise - due at end of your registered lab section
on either 11-4 or 11-7

WEEK "11" LAB EXERCISE

1. For each separate, unrelated code fragment below, write in the space provided what will be printed;
if there is an infinite loop involved, write "infinite loop" in that space instead. Pay attention to how
cout will format the output!

(You should answer these by reading the code; do not type them in and run them right now. And
don't ever run any that happen to be infinite loops, if any... 8-) )

(a) int ct;
___________________________

ct = 0;
___________________________

cout << "begin" << endl;
___________________________

while (ct < 0)
{ ___________________________

ct = ct + 1;
cout << ct << endl; ___________________________

}

cout << "end" << endl;

(b) int sum;
int ct; ___________________________

sum = 0; ___________________________
ct = 1;

___________________________
cout << "begin" << endl;

___________________________
while (ct < 7)
{ ___________________________

sum = sum + ct;
ct = ct + 1;

}

cout << ct << endl;
cout << sum << endl;



CIS 130 - Homework #9 p. 2
Fall 2005

(c) int ct;
___________________________

ct = 0;
____________________________

while (ct < 5)
{ ____________________________

cout << "Ni!" << endl;
} ____________________________

____________________________

(d) int sum_of_squares;
int ct; ____________________________

sum_of_squares = 0; ____________________________
ct = 0;

____________________________
while (sum_of_squares < 20)
{ ____________________________

ct = ct + 1;
sum_of_squares = sum_of_squares + (ct * ct);

}

cout << ct << endl;
cout << sum_of_squares << endl;

2. Consider asking_profits.cpp. It uses a sentinel-controlled loop to ask a user for a ticket price, and
then prints to the screen the profit for that ticket price; it continues until the user enters a ticket price
of -1 (that's the sentinel value, this case). Read over this carefully, and make sure that you
understand what it is doing and how it is doing it.

On cs-server, get to the directory where you want to work on the lab/homework. Then copy over
asking_profits.cpp into this directory within the cs-server command:

cp ~st10/130lab11_public/asking_profits.cpp .

^
note this period!!!!!

If you need to, you can also copy over the profit/revenue/cost/attendees functions to this same
directory using:

cp ~st10/130lect11_public/* .

^
note this period!!!!!

(a) Copy over these files, compile them, and compile/link/load/create-executable for
asking_profits.



CIS 130 - Homework #9 p. 3
Fall 2005

Run asking_profits, and immediately enter a ticket price of -1. What gets printed to the
screen?

(b) Run asking_profits, and type at least three different ticket prices. Below, write the ticket price
you tried, and the profit it printed out for it.

ticket_price: _______________ profit: _________________

ticket_price: _______________ profit: _________________

ticket_price: _______________ profit: _________________

Now enter a ticket price of -1 to end the program. Does the program try to print the profit from
a ticket price of -1?

_________________

3. I don't want you to think that loops only belong in main() functions; they certainly might be
contained in non-main functions, too. Consider example spam2.cpp from lecture; it could be
rewritten as follows:

in a file how_many_spam_msgs.cpp:

// Contract: how_many_spam_msgs: int -> void
//
// Purpose: Print the message "I LIKE SPAM!" to the screen <num_times>
// times, once per line.
//
// Examples: how_many_spam_msgs(3) should cause the following to be
// written to the screen:
// I like Spam!
// I like Spam!
// I like Spam!
//
// by: Sharon M. Tuttle
// last modified: 11-3-05

#include <iostream>
using namespace std;

void how_many_spam_msgs(int num_times)
{

int ct;

ct = 0;

while (ct < num_times)
{



CIS 130 - Homework #9 p. 4
Fall 2005

cout << "I LIKE SPAM!" << endl;
ct = ct + 1;

}
}

in a file spam3.cpp:

// Contract: main: void -> int
//
// Purpose: Ask the user how many times they'd like to see the
// message I LIKE SPAM! written to the screen, and then
// do so.
//
// Examples: If the user enters 3, then printed to the screen will
// be:
// I LIKE SPAM!
// I LIKE SPAM!
// I LIKE SPAM!
//
// by: Sharon Tuttle
// last modified: 11-03-05

#include <iostream>
#include "how_many_spam_msgs.h"
using namespace std;

int main()
{

int num_times;

// WHERE DO YOU START?
int counter = 0;

// HOW LONG DO YOU GO?
cout << "How many times would you like to see it? ";
cin >> num_times;

// DO IT
how_many_spam_msgs(num_times);

return EXIT_SUCCESS;
}

Read these over carefully; be prepared to answer the following questions:

1. Why is there no cin in how_many_spam_msgs?

2. How does spam3.cpp differ from the spam2.cpp posted on the public course web page?

Copy these over from 130lab11_public:



CIS 130 - Homework #9 p. 5
Fall 2005

cp ~st10/130lab11_public/*spam* .

...and compile them/compile/link/load/create-executable so that you can run spam3.

You will demonstrate that your spam3 runs for this part of the lab exercise, and you may be asked
the above questions, also.

HOMEWORK #9

You are to work individually on this assignment.

PART 1: (30% of the HW #9 grade)

Complete problems #1 and #2 below, and submit the files they mention (using ~st10/130submit) by
12:00 noon onWednesday, November 9th to receive any credit for Part 1 of HW #9.

PART 2: (70% of HW #9 grade)

Complete problems #3 - #6 below. When you are ready, you must submit the files specified in each
problem (using ~st10/130submit) by 12:00 noon on Friday, November 11th to receive any credit for
Part 2 of HW #9.

1. You should remember the square root function, sqrt, from the cmath standard library; it takes a
double value as an argument, and returns its square root.

Here's a simple interactive interface for sqrt:

in file asking_sqrt.cpp:

// Contract: main: void -> int
// Purpose: provide an interactive interface to the cmath sqrt function;
// it interactively asks the user for a number, reads in what
// he/she types, and print to the screen the square root of that
// value.
// Examples: If, when prompted, the user types 4, this would print to the
// screen:
// The square root of 4 is 2.
//
// by: Sharon M. Tuttle
// last modified: 11-03-05

#include <cmath>
#include <iostream>
using namespace std;

int main()
{

double input_val;

cout << "Enter the value for which you'd like the square root: ";



CIS 130 - Homework #9 p. 6
Fall 2005

cin >> input_val;

cout << "The square root of " << input_val << " is "
<< sqrt(input_val) << endl;

}

You can copy this file from 130lab11_public if you would like to "play" with it:

cp ~st10/130lab11_public/asking_sqrt.cpp .

^
note the period!

One use of loops (amongst many) is to provide a more repetitive user interface.

As simple practice of count-controlled loops, write a main function in a file named ctd_sqrt.cpp.
This should first ask the user how many square roots he/she wishes to compute; then, it must use a
count-controlled while loop to ask for precisely that many values, and for each one entered, it
should print that value's square root to the screen on its own line within a descriptive message (that
is, one indicating what kind of value is being printed, such as the one above in asking_sqrt.cpp's
main function).

When you are ready, use ~st10/130submit to submit your version of ctd_sqrt.cpp.

2. Or, perhaps your user would prefer another style of repetitive user interface.

As simple practice of sentinel-controlled loops, write a main function in a file named
sentl_sqrt.cpp. It should repeatedly ask the user for values for which square roots are desired --- but
it should also instruct the user to enter a sentinel value of -1 he/she would like to stop. As long as
he/she has just entered a value that isn't -1, it should print that value's square root the screen on its
own line within a descriptive message.

Note that you are required to use a properly-structured sentinel-controlled while loop in your
function; it must not try to compute the square root of the sentinel value of -1, and it may not use an
if statement in this particular while loop.

When you are ready, use ~st10/130submit to submit your version of sentl_sqrt.cpp.

3. And, some repetitive user interfaces are neither count-controlled nor sentinel-controlled; for
example, they might be more-generically event-controlled.

As I cannot think of a really reasonable one, you'll write a rather goofy one.

Write a main function in a file named goofy_sqrt.cpp. It should continue asking the user for values
whose square roots should be computed, for each one entered printing its square root to the screen
on its own line in a descriptive message, but also accumulating a running sum of all of the square
roots computed so far --- as long as this running sum does not exceed 100, it should continue asking
the user for values. As soon as this sum gets to 100 or higher, the function should stop, printing a
final message of "That's enough --- goodbye!".



CIS 130 - Homework #9 p. 7
Fall 2005

When you are ready, submit your version of goofy_sqrt.cpp.

4. Consider the profit/revenue/cost/attendees family of functions. Assume that (for whatever reason)
different ticket prices were used for different performances under this scenario. But now, you want
the sum of the profits for all of these performances.

(a) Write a main function in a file named total_profits1.cpp. The user is repeatedly asked to enter
the ticket price for each performance, and to enter a ticket price of -1 when all of the
performances' ticket prices have been entered. The function should compute the profit for each
performance based on its ticket price, and keep a running total of the profits. When a ticket
price of -1 is entered, the sum of all of the performances' profits should be printed to the screen
in a descriptive message.

Part of your grade for this function will be determined by whether your function uses the
appropriate style of while loop, and whether it is appropriately structured.

When you are ready, submit your version of total_profits1.cpp.

(b) You have now practiced adding up a collection of values using a loop --- you should be able to
add code to that to count how many values you have added together.

Copy total_profits1.cpp to a new file total_profits2.cpp; at the cs-server prompt, type:

cp total_profits1.cpp total_profits2.cpp

Now, modify total_profits2.cpp so that, in addition to computing the total profits for all of the
performances, it will also count how many ticket prices have been entered so far. After the
ticket price of -1 is entered, the message printed (giving the sum of all of the performances'
profits) should be modified to also include how many performances' profits are included in that
total (how many ticket prices were entered).

Be careful --- do not count the sentinel value entered; you are only counting the actual number
of ticket prices (actual number of performances) entered.

When you are ready, submit your version of total_profits2.cpp.

(c) One more small enhancement: if your loop has computed the sum of all of the performances'
profits, and has counted how many performances are involved, then it should be a small step to
now determine the average profit per performance.

Copy total_profits2.cpp to a new file total_profits3.cpp:

cp total_profits2.cpp total_profits3.cpp

... and modify total_profits3.cpp so that, after the loop, it computes the average profit per
performance, and its closing message now includes the total profits, the number of
performances, AND the average profit performance.



CIS 130 - Homework #9 p. 8
Fall 2005

When you are ready, submit your version of total_profits3.cpp.

5. Now, for something completely different: you are going to write a non-looping, non-main function
named get_code for use in problem #6.

get_code should not expect any arguments, but it will return an integer. It is to print a "menu" of
options to the screen that looks like the following:

to determine: please type:
-------------------------------
profit 1
revenue 2
cost 3
attendees 4
(or, to quit) any other number

your choice:

Then, it should read in the choice that the user types, and return it as the return value for this
function.

REVISED 11-07-05:
This is not quite a "regular" function; it returns a value, but interactively gets information from the
user. So a "plain" testing main will not quite work. However, you should be able to write
baby_test_get_code.cpp that calls it three times, and prints to the screen what it returns.

When you are ready, submit your versions of get_code.h, get_code.cpp, and
baby_test_get_code.cpp.

6. Now, write a main function in a file named tkt_price_queries.cpp that appropriately uses get_code.

This function is to use get_code to print its menu of options and return the code that the user enters,
and to then, as long as the user hasn't asked to quit, ask the user for the ticket price to be used and
then perform the computation corresponding to the code that he/she has entered (compute the profit
for that ticket price if the user entered the code 1, compute the revenue for that ticket price if the user
has entered the code 2, and so on). It should print the value computed to the screen in an appropriate
descriptive message.

Part of your grade for this function will be determined by whether your function uses the appropriate
style of while loop, and whether it is appropriately structured.

When you are ready, submit your version of tkt_price_queries.cpp.


