
CIS 130 - Homework #10 p. 1
Fall 2005

CIS 130 - Intro to Programming - Fall 2005
Homework Assignment #10 - REVISED 11-23, fixed typo in Problem 3bab

Homework #10:
HW #10 PART 1 is due by 12:00 NOON onWednesday, November 30, 2005;
HW #10 PART 2 is due by 12:00 NOON on Friday, December 2, 2005

There is NOWeek 13 Lab Exercise.

HOMEWORK #10

You are to work individually on this assignment.

PART 1: (30% of the HW #10 grade)
Complete problems #1 and #2 below, and submit the files they mention (using ~st10/130submit) by 12:00 noon
onWednesday, November 30th to receive any credit for Part 1 of HW #10.

PART 2: (70% of HW #10 grade)
Complete problems #3 - #6 below. When you are ready, you must submit the files specified in each problem
(using ~st10/130submit) by 12:00 noon on Friday, December 2nd to receive any credit for Part 2 of HW #10.

1. Quick review: you should be quite familiar with a count-controlled while loop at this point:

const int NUM_DESIRED = 15;
int ct;
ct = 0;

while (ct < NUM_DESIRED)
{

cout << ct << endl;
ct = ct + 1;

}

And, from the lecture and readings on for-loops, you will hopefully not be surprised that below is the
(mostly) equivalent for-loop implementing the same thing:

const int NUM_DESIRED = 15;

for (int ct = 0; ct < NUM_DESIRED; ct = ct + 1)
{

cout << ct << endl;
}

As a simple warm-up, consider how_many_spam_msgs from the Week "12" lab exercise:

// Contract: how_many_spam_msgs: int -> void
//
// Purpose: Print the message "I LIKE SPAM!" to the screen <num_times>
// times, once per line.
//

CIS 130 - Homework #10 p. 2
Fall 2005

// Examples: how_many_spam_msgs(3) should cause the following to be
// written to the screen:
// I like Spam!
// I like Spam!
// I like Spam!
//
// by: Sharon M. Tuttle
// last modified: 11-3-05

#include <iostream>
using namespace std;

void how_many_spam_msgs(int num_times)
{

int ct;

ct = 0;

while (ct < num_times)
{

cout << "I LIKE SPAM!" << endl;
ct = ct + 1;

}
}

Modify this so that is now uses a properly-structured for-loop instead of a count-controlled while-loop.

Try out your new version of how_many_spam_msgs by running it from the main function in spam3.cpp;
when you are satisfied with it, submit how_many_spam_msgs.cpp using ~st10/130submit.

2. You will recall that we discussed 1-dimensional arrays as well --- so, an array of 5 integer gerbil weights
could be declared using:

const int NUM_GERBILS = 5;
int gerbil_wts[NUM_GERBILS];

And, you should also recall that gerbil_wts[3], for example, then refers to the fourth gerbil weight in
this array --- the first is at gerbil_wt[0], the second is at gerbil_wt[1], and so on.

A tidbit I didn't mention yet, but that you may find useful: in C++, when you declare an array, you can
immediately set it to a set of values by writing the desired values in curly braces, separated by commas ---
for example,

int gerbil_wts[NUM_GERBILS] = {10, 8, 6, 14, 7}

This can be especially useful when you want to set up an array for testing. (In other cases, you might ask the
user for values interactively, using a for-loop and setting my_array[ct] to be the latest value, or you might
read values from a file into an array, or somehow compute/generate/etc. the desired values and then store
them in an array.)

CIS 130 - Homework #10 p. 3
Fall 2005

As you can imagine, there might be times when you'd like to write a function that has an array as one of its
parameters --- but, you'd hate to have to write one version for a 10-element array, another for a 15-element
array, etc. But, in C++, you don't have to; you can declare an array with NO number of elements indicated,
and then pass as its argument an array of ANY size. (How C++ actually gets away with this is a topic for
CIS 230...)

The slight catch to this convenience is that you cannot "look" at a C++ array and "know" how big it is ---
you have to be told. So, almost always, when a function takes an array as an argument, it also takes another
argument also, an integer, that represents how many elements are in that array.

Here's an example: this function, print_array, takes an array of integers and its size as its two arguments. It
simply prints each element of the array on its own line (notice how, in the contract, the type of an integer
array parameter is written as int[]; in the header, the array parameter declaration is written like a "normal"
array declaration, except with no size in the []):

// Contract: int[] int -> void
// Purpose: print each of the <num_elements> elements in the array
// <my_array> to the screen, each on its own line.
// Examples: if int quiz_grades[3] == {70, 100, 3}, then
// print_array(quiz_grades, 3) would cause:
// 70
// 100
// 3
// ...to be written to the screen

#include <iostream>
using namespace std;

void print_array(int my_array[], int num_elements)
{

for (int ct = 0; ct < num_elements; ct = ct + 1)
{

cout << my_array[ct] << endl;
}

}

WITH that set up --- write a main function in a file named babytest.cpp. It should run the example
mentioned in print_array's opening comment block, AND it should also run another example call to
print_array of your choice (on another array that you declare and fill). Before each call to
print_array, include a cout that describes what you *should* be about to see (describe the expected
value, since == won't work for non-returned results); for example,

cout << "About to call print_array(quiz_grades, 3) --- should see"
<< " 70, 100, 3, each on its own line" << endl;

print_array(quiz_grades, 3);

Remember that you'll have to declare and set up the example arrays for these calls! AND, for testing mains
like this, I'm going to say that it is all right to use literals for the little test arrays' sizes. (But in a non-testing
situation, you generally should use either parameters, named constants, or local variables for array sizes,

CIS 130 - Homework #10 p. 4
Fall 2005

picking whichever is most appropriate.)

Test and debug your babytest.cpp; when you are satisfied with it, submit your babytest.cpp using
~st10/130submit.

TYPO FIXED 11-23-05
3. And, let's do an example that involves the char type we discussed in lecture. (Remember, a char literal is

enclosed in single quotes, and it is one character --- '5' is the character literal 5 (not the integer literal,
which would be written 5 , nor the double literal, which could be written 5.0 . And 'a' is the character
literal a, ' ' is the character literal consisting of a blank character, etc.

Write a function write_line that expects two parameters: a character, and an integer. Its purpose is to write
that character to the screen that many times, followed by a newline. (That is, write_line('f', 4) should cause
the following to be printed to the screen:

ffff

One additional requirement: you are required to make appropriate use of a for-loop in write_line.

Even though this is interactive, you need to include examples in its opening comment block --- follow
print_array's example above to see an example of how this should be done for such a function. Include at
least 3 examples with different characters and lengths.

To test this, write a main function in a file named test_write_line.cpp. It should run the examples
mentioned in write_line's opening comment block; before each, include a cout that describes what you
should be about to see (since, again, == won't work with non-returned results). For example,

cout << "About to call write_line('f', 4) --- should see:" << endl
<< "ffff" << endl;

cout << "Do see: " << endl;
write_line('f', 4);

Again, note that, for a testing main, we're saying that using literals instead of named constants is acceptable.

Test and debug your write_line.cpp and test_write_line.cpp; when you are satisfied with them, create an
example output file using:

test_write_line > test_write_line.out

Submit your write_line.cpp, test_write_line.cpp, and test_write_line.out using ~st10/130submit. (I won't
require you turn in write_line.h this time; you'll obviously have to have created it, though!)

4. What if you wanted to write a "box" of some character to the screen, instead of just a single line?

Write a function write_box; it should expect three parameters, a character, the height of the desired box,
and the width of the desired box. (For example, write_box('X', 3, 5) should result in:

XXXXX
XXXXX
XXXXX

...being written to the screen.

CIS 130 - Homework #10 p. 5
Fall 2005

Note the following requirements:
* your solution must call write_line appropriately;
* your solution must use a for-loop appropriately;
* include at least 2 examples in its opening comment block.

To test this, write a main function in a file named test_write_box.cpp. It should run the examples
mentioned in write_box's opening comment block; before each, include a cout that describes what you
should be about to see (since, again, == won't work with non-returned results). For example,

cout << "About to call write_box('X', 3, 5) --- should see:" << endl
<< "a box of X's 3 X's high and 5 X's wide" << endl;

cout << "Do see: " << endl;
write_box('X', 3, 5);

Again, note that, for a testing main, we're saying that using literals instead of named constants is acceptable.

Test and debug your write_box.cpp and test_write_box.cpp; when you are satisfied with them, create an
example output file using:

test_write_box > test_write_box.out

Submit your write_box.cpp, test_write_box.cpp, and test_write_box.out using ~st10/130submit. (I won't
require you turn in write_box.h this time; you'll obviously have to have created it, though!)

5. A bit more array practice is needed, however. So, let's start by noting that a simple bar chart could be created
by putting a row of X's equal to each value in a set of values --- for example, for {3, 5, 2},

XXX
XXXXX
XX

Write a function baby_bar. It takes an integer array and the number of elements in that array as parameters;
it prints a "baby bar chart" like that above to the screen, for each row printing the number of X's equal to the
corresponding value in the array. For example, if

int my_test_array[5] = {1, 3, 5, 2, 7}

...then baby_bar(my_test_array, 5); should result in the following being printed to the screen:

X
XXX
XXXXX
XX
XXXXXXX

Additional requirements from baby_bar:
* your solution must call write_line appropriately;
* your solution must use a for-loop appropriately;

CIS 130 - Homework #10 p. 6
Fall 2005

* include at least 1 example in its opening comment block.

To test this, write a main function in a file named test_baby_bar.cpp. It should run the example(s)
mentioned in baby_bar's opening comment block; before each, include a cout that describes what you
should be about to see (since, again, == won't work with non-returned results). For example,

cout << "About to call baby_bar(my_test_array, 3) --- should see:" << endl
<< "1 X, then 3 X's, then 5 X's, then 2 X's, then 7 X's" << endl;

cout << "Do see: " << endl;
baby_bar(my_test_array, 3)

Again, note that, for a testing main, we're saying that using literals instead of named constants is acceptable.

Test and debug your baby_bar.cpp and test_baby_bar.cpp; when you are satisfied with them, create an
example output file using:

test_baby_bar > test_baby_bar.out

Submit your baby_bar.cpp, test_baby_bar.cpp, and test_baby_bar.out using ~st10/130submit. (I won't
require you turn in baby_bar.h this time; you'll obviously have to have created it, though!)

6. Finally, I wouldn't want you to think that an array cannot be involved in a "pure"-style function; it certainly
can be! Consider (and write) a function num_too_big; it could take an array of double values, the number of
elements in that array, and an upper bound as its parameters, and return the number of elements in that array
that are strictly greater than the given upper bound. For example,
for double my_vals[8] = {3.4, 1, 3, 8, 20, 12.7, 2.01, 13.3};

num_too_big(my_vals, 8, 10) == 3
num_too_big(my_vals, 8, 500) == 0

Additional requirements:
* num_too_big must make appropriate use of a for-loop.
* Include at least 3 examples in its opening comment block, including at least one for which all of the

array values are less than the upper bound given.

You can write a testing main for this; do so, in file test_num_in_excess.cpp. Fill an array as needed to run
the examples in num_too_big's opening comment block, print a line to the screen saying that you are testing
num_too_big and that 1's == passed and 0's == failed, and then print out the results of comparing the results
of calling num_too_big with their expected results.

Again, note that, for a testing main, we're saying that using literals instead of named constants is acceptable.

Test and debug your num_too_big.cpp and test_num_too_big.cpp; when you are satisfied with them,
create an example output file using:

test_num_too_big > test_num_too_big.out

Submit your num_too_big.cpp, test_num_too_big.cpp, and test_num_too_big.out using
~st10/130submit. (I won't require you turn in num_too_big.h this time; you'll obviously have to have

CIS 130 - Homework #10 p. 7
Fall 2005

created it, though!)

