
CIS 130 - Homework #11 p. 1
Fall 2005

CIS 130 - Intro to Programming - Fall 2005
Homework Assignment #11

Homework #11:
HW #11 PART 1 is due by 12:00 NOON onWednesday, December 7, 2005;
HW #11 PART 2 is due by 12:00 NOON on Friday, December 9, 2005

Week "14" Lab Exercise - due at end of your registered lab section
on either 12-2 or 12-5

WEEK "14" LAB EXERCISE

Now for something completely different...

For this week's lab, you are going to be introduced to something called an integrated development
environment (IDE). This is software that essentially sits on top of a compiler --- instead of typing your program
in using pico and compiling it using the g++ command, you type it in in a window that is part of the IDE and
compile it by clicking on a button or selecting an option from a menu within that IDE. Other tools are often
provided as well.

You'll be introduced to an IDE for C++, called DevC++. It happens to be built on top of the g++ compiler, which
is a definite advantage; it is also free software, another definite advantage. You might be expected to use it in CIS
230, so that's another reason to let you see it here first. What's the downside? It's only available for the Windows
operating system --- which means the description below is being borrowed from an introduction by Professor
Ann Burroughs. Any errors should be assumed to be mine!

If you do run Windows on your home computer, you can download it yourself for free if you'd like, from
http://www.bloodshed.net. That will NOT be required for this lab, however, since you'll be doing it in GH 215,
which should have DevC++ already installed. (You are not required to use it for HW #11, either. But if you do
decide to try doing so, note that you would need to sftp your resulting files to cs-server to then submit them
using ~st10/130submit.)

(For some reason, it is a bit tricky to find free C++ IDE's. I know of two very nice free ones for Java --- DrJava,
at www.drjava.org, and BlueJ, at www.bluej.org. There's also a very powerful free IDE from IBM that can be
used for a number of languages --- eclipse, at www,eclipse.org. It is not for beginners, I am told; it is supposed to
have a bit of a learning curve. It is worth knowing about, however. All three of these latter IDE's work on a wide
variety of platforms --- Windows, Mac, and Unix/Linux.)

That said, let's get started.

The following instructions are modified from a lab assignment by Prof. Ann Burroughs.

1. We're in the world of Windows now. Make a directory for yourself on one of the hard drives (probably c: in
GH 215?) in a location you can find and remove later.

2. Along with this handout on the course web page, you will see links to five C++ source code files; these,
together, make up a C++ program. You should see show_grade_freq.h, show_grade_freq.cpp,
grade_avg.cpp, grade_avg.h, and process_grades.cpp.



CIS 130 - Homework #11 p. 2
Fall 2005

There are also copies of these five files on cs-server, in the directory ~st10/130hw11_public.

I'm not sure what you'll find to be the easiest way to get these from one of these sources into the directory
that you created for #1. You could use SSH File Transfer Client (which really ought to be called sftp, but
I'm not sure it is...) to get them from cs-server, or you could somehow copy the files from the course web
page --- but that would mean copying and pasting.

3. Bring up DevC++ (in GH 215, it should be in the Start menu, probably under CNRS; if not there, I will
announce during lab where it is.)

4. Choose File -> New -> Project and then choose Console Application. Name the project process_grades
and click OK. You'll get a dialog window with a title Create new project.

Navigate to the directory you made in Step 1 and click Save. You will see a window with some template
code in it; DevC++ has given you a basic main() function skeleton. We're not going to use it, though.

5. Choose Project -> Add to Project.
Add these files to the project: show_grade_freq.h, show_grade_freq.cpp, grade_avg.cpp, grade_avg.h,
and process_grades.cpp .

6. Choose Project -> Remove from Project.
Select main.cpp to be removed. You can answer "no" to the "save main.cpp?" question.

7. Open the file process_grades.cpp (double-click it in the left frame).
Add this statement to the program, right before the return of EXIT_SUCCESS:

system("PAUSE");

(This is an oddness of a number of graphical IDE's --- without this, the console window disappears
so fast that you cannot see your program's results!)

8. Choose Execute -> Compile and Run
Your program compiles, and if there are no compilation errors, it goes into execution. Enter what it
asks you to enter...

9. Let's close this project: File -> Close Project
Answer Yes to the Save Changes to process_grades dialog prompt.

10. Let's open this project again: File -> Open Project or File
The project is now called process_grades.dev. You can open individual files, but opening the
project itself is the only way to open the whole "package".

11. If you wanted to enter files into a project from scratch, the command is File -> New Source File.



CIS 130 - Homework #11 p. 3
Fall 2005

12. Put your name on the Next: list on the board; when it is your turn, I'll observe you running this
program (to show that you successfully did so under DevC++).

NOTE: WHEN I COME to OBSERVE YOUR PROGRAM, I WILLALSOASK TO SEE
YOURANSWERS TO THE FOLLOWING:

Consider:

int val1, val2, val3, val4, val5;

val1 = 15;
val2 = val1++;

val3 = 15;
val4 = ++val3;

val5 = 15;
val5 += 3;

What are the values of val1, val2, val3, val4, and val5 after this fragment has been run?

val1 _______ val2 _______ val3 _______ val4 _______ val5 _______

(Not sure? Why not write a little main() that does this, and then prints out the values of val1, val2,
val3, val4, and val5?)

Note that you will lose points for incorrect values for val1 through val5 above (-3 for each one
incorrect); so, you need to be confident about your answers before you give them.

Once you've done this, you have received credit for this lab exercise (minus any points for incorrect
values above).

13. Close the project again (File -> Close Project). If this weren't files you could grab from the course
web page or cs-server whenever you'd like, I'd recommand that you copy any of the files that you
need to save from the directory that you made in Step 1 to a more permanent location such as a
flash drive or or to somewhere on cs-server (via sftp). If the work in an HSU lab is for homework,
you should remove all of your files from the computer's hard drive before you leave.

14. Final note: In general, you need to have all of the pieces of your program in a single project.

HOMEWORK #11
You are to work individually on this assignment.

PART 1: (30% of the HW #11 grade)
Complete problem #1 below, and submit the files it mentions (using ~st10/130submit) by 12:00 noon on
Wednesday, December 7th to receive any credit for Part 1 of HW #11.



CIS 130 - Homework #11 p. 4
Fall 2005

PART 2: (70% of HW #11 grade)
Complete problems #2 and #3 below. When you are ready, you must submit the files specified in each problem
(using ~st10/130submit) by 12:00 noon on Friday, December 9th to receive any credit for Part 2 of HW #11.

1. We have discussed pass-by-reference parameters now; you need to write at least one function that uses them.

Consider a program which requires the user to enter y or n to a number of questions. Each time, it may
*really* want to be sure that ONLY a y or n is entered by the user --- so much so that it should KEEP asking
until a y or n is given.

This might be convenient to encode into a function; write a function get_ans that doesn't return anything,
but has one pass-by-reference parameter, a char, that will be an output parameter, set to the user's answer. It
asks the user to enter y or n, and reads in what they answer, until either a y or an n has been entered. Then it
sets the output parameter accordingly, and should be finished.

How will you test this? A small testing-main test_get_ans.cpp should be written that calls get_ans at least
twice, and then prints out, within a descriptive message, the value of its pass-by-reference argument after
the call to get_ans each time. Make sure that you try entering values beside y and n, to see if it stubbornly
keeps asking; and, make sure you answer y at least once and n at least once. (I won't be able to see if you've
done this, but you should still do it...!)

When you are satisfied with them, submit get_ans.cpp and test_get_ans.cpp using ~st10/130submit.

2. Another common use of pass-by-reference parameters is to return more than one result.

As a quick-n-sleazy example, consider an array of numbers. You might try to find out both its average and
its lowest value.

Write a function avg_and_min, whose return type should be void, that requires four parameters: two input
parameters, an array of double values and an int giving the size of the array, and two output parameters, that
are hoped to be set to be the average of the values in the array and the smallest value of the values in the
array. The two output parameters should, of course, be pass-by-reference.

Note, because of the use of output parameters, that will affect how you should write your Examples.

For example:

// Examples: for double vals[5] = {-5, 12, 1056, -909, 48},
// and double thr_avg and double thr_min,
// after the call avg_and_min(vals, 5, thr_avg, thr_min),
// thr_avg == 40.4
// thr_min == -909
//
// (and insert at least one additional DIFFERENT example of your
// choice)

How will you test this? A small testing-main test_avg_and_min.cpp should be written that sets up at least
two different arrays for testing use (including all that you include in the Examples section for



CIS 130 - Homework #11 p. 5
Fall 2005

avg_and_min). You can use the "1's == pass, 0's == fail" style of testing output, remembering that you want
to compare what the output parameter arguments are after each call to what you expected them to be.

This one is suitable for creating an output file; so, when you are satisfied with these, create an example
output file using:

test_avg_and_min > test_avg_and_min.out

and then submit avg_and_min.cpp, test_avg_and_min.cpp, and test_avg_and_min.out using
~st10/130submit.

3. Now -- we really need some switch statement practice.

Let's say that people have assigned point values to all of the face cards in a deck of playing cards:

J - 10
Q - 12
K - 14
A - 16

Write a function sum_hand that takes no arguments, but returns an int. It should call function get_ans to
ask the user if he/she has more cards to enter; while the answer is y, sum_hand should then ask the user to
enter J, Q, K, or A. It should use a switch statement, then, to add to a running total the point value of each
card entered. When the user answers n (with the help of get_ans), then sum_hand should simply return the
sum of the face cards entered.

How will you test this? A small testing-main test_sum_hand.cpp should be written that calls sum_hand at
least twice, and then prints out, within a descriptive message, the value of the sum of the hand entered.
Make sure that you try entering at least one of J, Q, K and A before you are done, to "exercise" those switch
cases; because this is so interactive, it is harder to do traditional "1==pass, 0==failed" testing, but you
should interactively run your Example cases from sum_hand's opening comment block, of course.

When you are satisfied with them, submit sum_hand.cpp and test_sum_hand.cpp using ~st10/130submit.


