
CIS 480 - Exam #1 Review Suggestions p. 1

CIS 480 Exam #1 Review Suggestions

* last modified: 9-22-05, 11:53 am

* remember: YOUARE RESPONSIBLE for course reading, lectures/labs, and
especially anything that's been on a homework, in-lecture exercise, or lab exercise;
BUT, here's a quick overview of especially important material.

* you are permitted to bring into the exam a single piece of paper (8.5" by 11") on
which you have handwritten whatever you wish. This paper must include your name,
it must be handwritten by you, and it will not be returned.

Other than this piece of paper, the exam is closed-note, closed-book, and closed-
computer.

* this will be a pencil-and-paper exam, but you will be reading and writing Python
code, statements, and expressions in this format.

Note that a packet of Python code may be included along with the exam, both for
reference and for use directly in some exam questions --- the ability to make use of
existing code as a reference is a vital skill in Python (as in most programming
languages).

* note that you could be asked to write Python expressions, statements, functions,
or up to and including entire Python modules;

(note, too, that answers may lose points if they show a lack of precision in
terminology; for example, if I ask for a literal or an expression and you give an
entire statement, instead)

* note that I could ask you questions *about* Python, or about various aspects of
Python;

* note that I could ask you what given Python code does or means; I could give
you one or more statements, a function, etc., and ask you what it does or what it
would output in a given situation (or how you could write a call to use it, etc.)

* you could be asked to modify a piece of code or function or module, or to
correct a segment of code or a function or a module, as well;

* Python basics

* There could be questions *about* Python in general; who created it, its general
design philosophy, what it was named after, etc.



CIS 480 - Exam #1 Review Suggestions p. 2

* There could be questions about how we have run Python thus far --- how to start
up and run the python interpreter, how you can run a Python module from a
UNIX/Linux command line, how you can import a module into the Python
interpreter or into another module, how you then use functions so imported;

* There was no reading assignment for the "whirlwind tour" of Python (week 2
lecture); you are responsible for the features discussed in that lecture.

* You should be comfortable with how Python differs from C++/Java (for
example, no variable declarations, blocks indicated by indentation, strong but
dynamic typing, etc.)

* Some of the basic features of Python from that "whirlwind tour" included how
to write arithmetic and boolean expressions, how to set up variables, how to
write and call functions, how to write if statements, how to write basic while
loops, simple output, and more;

* At this point, you should be comfortable with and familiar with the basic Python
types, including NoneType, whose one literal is None;

* How can you determine the type of any Python expression?

* Python strings

* You are responsible for the Chapter 5 reading on strings; you do not need to
worry about the Chapter 27 part. I will also not be asking any questions about
the older string module; we'll stick to str objects and their operators and
methods.

* Note that we covered basic for-loops here;

* We've had lectures, lab exercises, and homeworks on strings; I'll expect you to
be quite comfortable with them.

* Some important string features include: their basic operators (indexing,
concatenation, repetition, slicing, etc.); the string methods we have discussed so
far; how they are immutable, how you can do string formatting, etc.

* what are some of the different ways to write string literals? Why are some more
useful in some situations than others?

* We say that a string is an immutable sequence; what are the implications of
this?

* what kinds of things are strings good for?



CIS 480 - Exam #1 Review Suggestions p. 3

* Python lists

* You are responsible for the Chapter 6 reading on lists.

* How can you use a for-loop to traverse a list? How does this differ from using a
for-loop to traverse a string?

* We've had lectures, lab exercises, and homeworks on lists; I'll expect you to be
quite comfortable with them.

* Some important list features include: their basic operations (indexing,
concatenation, repetition, slicing, etc.); the list methods we have discussed so
far, how they are mutable, how ANYTHING can go into a list, how they can
grow and shrink, etc.

* We've also discussed some string methods that involve lists (join, split)

* In this discussion, we got to discuss further functions/methods that do not return
anything (for example, list methods append, sort, and reverse); how are such
functions written? How does this affect how you use these functions/methods?

* Some important list features include: their basic operators (indexing,
concatenation, repetition, slicing, etc.); the list methods we have discussed so
far; how they are mutable, etc.

* We say that a list is an mutable sequence; what are the implications of this?

* how do you access a list of lists?

* what kinds of things are lists good for?

* Python dictionaries

* You are responsible for the Chapter 6 reading on dictionaries.

* We've had a lecture on dictionaries; I won't expect quite as much adeptness with
them (yet!) as you have with lists and strings, but you should be comfortable
with the basics about them, with the topics read and discussed about them, and
with how they compare/constrast with lists (and strings, even)

* How can you use a for-loop to traverse a dictionary? How does this differ from
using a for-loop to traverse a string or a list?

* Some important dictionary features include: their basic operations (grabbing the



CIS 480 - Exam #1 Review Suggestions p. 4

value given a key, how to add a key-value pair, how to change a key's value,
etc.); the dictionary methods we have discussed so far, how they are mutable
(but keys aren't!), how ANYTHING can go into a dictionary (except for those
key limitations), how dictionaries can grow and shrink etc.

* We say that dictionaries are mutable but not sequences; what are the
implications of these?

* how do you access the contents of a list within a dictionary? of a dictionary
within a list? etc.!

* what kinds of things are dictionaries good for?

* Python tuples

* You are responsible for the Chapter 7 reading on tuples (but only through tuples,
for this exam).

* We've discussed the basics of tuples; I won't expect quite as much adeptness
with them (yet!) as you have with lists and strings, but they are relatively simple
and share some important characteristics with lists, so you should be
comfortable with the basics about them, with the topics read and discussed about
them, and with how they compare/constrast with lists (and strings, even)

* how DO tuples differ from lists? You should be able to come up with at least
one scenario where a tuple can be used, but not a list;

* How can you use a for-loop to traverse a tuple?

* Some important tuple features include: their basic operations (indexing,
concatenation, repetition, slicing, etc.); how there are not tuple methods (!), how
they are immutable, etc.

* We say that a tuple is an immutable sequence; what are the implications of
this?

* what kinds of things are tuples good for?


