
CIS 480 - Exam #2 Review Suggestions p. 1

CIS 480 Exam #2 Review Suggestions

* last modified: 11-03-05, 11:43 am

* remember: YOUARE RESPONSIBLE for course reading, lectures/labs, and especially anything that's been
on a homework, in-lecture exercise, or lab exercise; BUT, here's a quick overview of especially important
material.

* you are permitted to bring into the exam a single piece of paper (8.5" by 11") on which you have
handwritten whatever you wish. This paper must include your name, it must be handwritten by you, and it
will not be returned.

Other than this piece of paper, the exam is closed-note, closed-book, and closed-computer.

* this will be a pencil-and-paper exam, but you will be reading and writing Python code, statements, and
expressions in this format.

Note that a packet of Python code may be included along with the exam, both for reference and for use
directly in some exam questions --- the ability to make use of existing code as a reference is a vital skill in
Python (as in most programming languages).

* note that you could be asked to write Python expressions, statements, functions, or up to and including
entire Python modules;

(note, too, that answers may lose points if they show a lack of precision in terminology; for example, if
I ask for a literal or an expression and you give an entire statement, instead)

* note that I could ask you questions *about* Python, or about various aspects of Python;

* note that I could ask you what given Python code does or means; I could give you one or more
statements, a function, etc., and ask you what it does or what it would output in a given situation (or
how you could write a call to use it, etc.)

* you could be asked to modify a piece of code or function or module, or to correct a segment of code or
a function or a module, as well;

* Tuples

* You were responsible for tuple basics last time --- now I'll expect you to be comfortable writing code
involving them, too.

* How do you write a 1-item tuple literal?

* I will not ask about when you don't need parentheses around a tuple --- since I think it is better style
just to put them in, for readability.

* Dictionaries

* Likewise --- you were responsible for dictionary basics last time, but now I'll expect you to be
comfortable writing code involving them, too.

* What are the practical differences between grabbing a key's value with the [] notation, and grabbing it

CIS 480 - Exam #2 Review Suggestions p. 2

with the dictionary get method?

* With regard to dictionaries: what can you do with a tuple that you cannot do with a list? Why?

* make sure you can iterate through a dictionary in a variety of fun and useful ways; make sure you can
read code that does so, also.

* Be comfortable reading/writing dictionaries being used to implement multi-way branches (see Learning
Python, Ch. 9, pp. 147-148, as well as the Week 10 Lecture and Lab, going deeper into functions).

* Files

* What does the open function return? What are the three processing modes possible for open's second
argument, and what do they mean?

* Should be able to read from a file --- be comfortable with at least the following file methods:

read(), read(N), readline(), readlines()

* what do these return if called after the "end" of a file stream?

* why might you sometimes want to use xreadlines() instead of readlines()?

* Should be able to write to a file --- be comfortable with at least the following file methods:

write(S), writeline(L)

* In terms of course style guidelines (and occasionally even for practical reasons), what are expected to
do to a file object when you are done using it? Be able to write the statement for doing this, too.

* How can you do interactive input in Python?

* you are only responsible for the raw_input() function; there will not be any questions on the
input() function, as its use introduces potential security issues.

* Be confortable reading and writing code making use of raw_input()

* Focus on TYPING in Python

* In Python, a variable [Learning Python, p. 69] "never has any type information or constraint associated
with it"; where does the notion of type "live", instead?

* what are the implications of this for Python variables?

* What must be done to a Python variable before it can be used?

* I may ask questions to see if you are really getting the distinction between names and objects;

* You may be required to read/write name/object "pictures" liked we used on the whiteboard in lecture to
describe/show what is really happening as different assignments are made.

* What happens in Python to a non-integer, non-small-string object once no name is referencing it?

CIS 480 - Exam #2 Review Suggestions p. 3

* It is quite likely that I will give you some code, and ask you what the involved variables' values are
after that code (which change? which do not?); I could also ask you why.

* How do assignments differ when mutable objects are involved vs. when immutable objects are
involved?

* What are the three type (and operation) categories in Python? Be able to give examples of type(s) in
each.

* How can you get a copy of a mutable object, as opposed to a reference to it? How can you get a
"complete, fully-independent copy of a deeply-nested data structure" [Learning Python, p. 120]?

* What does == test for? What does is test for? Be comfortable reading, writing both, but also be aware
which one is more commonly used.

* Intro to REGULAR EXPRESSIONS

* which module did we use for these? (There's more than one, but this one is the only one that we
discussed, and is the only one you are responsible for.)

* Remember that you were assigned to reading the Kuchling tutorial for this; (and, the link to it is still
available from the public course web page).

* What are Regular Expressions (RE's)? How can they be used?

* How do you use re to obtain a regular expression object? What function do you use? What argument(s)
does it expect? What does it return?

* Let's say you have a regular expressions object. You should be comfortable reading/writing code
involving the regular expression object methods search, match, findall.

* Since several of the regular expression object methods return match objects, you should also be
comfortable reading/writing code involving the match object methods group, start, end, and span.

* You should be comfortable reading/writing code involving the following RE metacharacters: [] \ . *
+ ? { } | ^ $ \b \B \A \Z

* In terms of grouping (using ()), you are only responsible for knowing that you can use them to
apply something such as * to a collection of items;

* how does ^ behave when it is the first character inside [] ? How else can it be used?

* You should be comfortable reading/writing code involving the following RE predefined special
sequences: \d \D \s \S \w \W

* Remember: in what form does one usually write regular expression strings? Why?

* What do we mean when we say that repetitions such as * are "greedy"?

* Be comfortable with the re compilation flags re.IGNORECASE and re.MULTILINE

CIS 480 - Exam #2 Review Suggestions p. 4

* how do ^ and $ behave differently when compiled with re.MULTILINE as when not?

* Chances are extremely good that you will have to write, read RE strings (and other RE-related code)

* Deeper into FUNCTIONS

* What are the implications of a def statement actually being executable code? (What does that
mean you can do in Python that you cannot do in Java/C++?)

* When Python reaches and runs a def statement, what really happens? (What is generated, what is
assigned?)

* If you assign a name to a function object --- how can you call that function object using that name?

* What is a higher-order function? How can you write one in Python?

* Be comfortable reading/writing functions that take functions as arguments; be comfortable
reading/writing functions that return functions as their results.

* Be able to call a function that takes a function as an argument; be able to call a function that
returns a function as its result (and call that returned function, too).

* (as already mentioned, this lecture/lab is where we discussed using dictionaries to implement multi-
way branches...)

* Should be comfortable reading/writing Python lambda expressions, and code involving them;

* What is a lambda expression's value? What is its syntax and semantics?

* How does a lambda expression differ from a def statement?

* What are its limitations? Where is it particularly useful? Where can you use a lambda expression
that you could not use a def statement?

* Be comfortable reading, writing code involving the built-in functions apply, map, filter, and reduce.

* How are parameters passed in Python? How does this differ from parameter passing in C++? (how does
it differ from pass-by-value and pass-by-reference?)

* What kind of Python arguments, in practice, usually end up "behaving" like C++ pass-by-value?

* What kind of Python arguments, in practice, usually end up "behaving" like C++ pass-by-
reference?

* Be comfortable with Python scope rules;

* You should be able to read a code fragment (or several files' contents) and determine the scopes of
the names within them;

* What is the scope of a def statement's parameter names?

* What is the assumption when a name is assigned within a def statement? How can you "override"

CIS 480 - Exam #2 Review Suggestions p. 5

this assumption, if you want to?

* What does so-called global scope really mean, in Python? What does it really span?

* However, how can you use a "global" variable elsewhere?

* What does LEGB mean? (what is the LEGB rule?)

* Name references in Python search at most four scopes --- what are they?

* You should be comfortable reading/writing code using the four special argument-matching modes
discussed;

* How can you write a function that can take a varying number of arguments?

* How can a parameter have a default value if no corresponding argument is provided?

* What are keyword arguments? How can you use them in a function call? What are some of the
potential benefits of using them?

* How can a function be written to grab unmatched keyword arguments and gather them into a
dictionary?

* Focus on Modules

* You are responsible for the material covered in the Week 11 Lecture (11-1-05), but I will keep in mind
that you haven't had a homework covering this material yet. (You will have by the Final Exam...) You
should be comfortable with the basic concepts discussed.

* ...although you should be VERY comfortable with basic module use, since we've been using them all
semester, and you should be VERY comfortable with the import statement;

* what does the from statement do?

* Even without having had a homework on this, from the lecture and your reading you should be
able to read, write from statements;

* How does from differ from import?

* what does the reload function do?

* Even without having had a homework on this, from the lecture and your reading you should be
able to read, write reload function calls;

* What argument does reload expect?

* Why is reload needed? (What can it do that import cannot?)

* Can you reload a module which you have accessed using just from?

* What are the large collection of utility modules automatically provided by a Python standard
installation called?

CIS 480 - Exam #2 Review Suggestions p. 6

* How can you access and use them?

* Currently, roughly how many of them are there?

* Where is a good source for browsing through documentation on them?

* How does an import statement differ from a C++ #include?

* What are the three distinct steps that are done the first time a module is imported by a program?

* When you have used the import statement with a module name --- what happens as a result?
(What name or names are assigned? And what do they refer to?)

* What implications does this have on how you can name your Python module files?

* Whe you have used a from statement (or from *), what happens as a result? (What name or names
are assignmed? And what do they refer to?)

* How does Python locate the module file referenced by an import or from statement?

* What four pieces are concatenated to compose its search module path?

* What is PYTHONPATH? How can it be set up in a bash shell such as cs-server? What would its
effect then be on the search module path?

* What is the sys.path list? How can you look at it? What would happen if you appended to it? How
does Python use it?

* What is the practical reason why Python is designed so that you do not put the module file suffix
in import and from statements?

* When is a .pyc file created? What is in it? How can Python use it? What is its benefit?

* What is the sys.modules dictionary? How can you look at it? How does Python use it?

