CIS 480 - Python - Homework #1 and Week 2 Lab Exercise p.1
Fall 2005

CIS 480 - Python - Fall 2005
WEEK 2 LAB EXERCISE and Homework #1

week 2 lab exercise due: Thursday, September 1st, END of lab
HW #1 due: Thursday, September 8th, 12:00 noon

Until I develop more formal opening comment block standards (which I plan to do), begin each python
module that you write with at least the following opening comments:

* acomment containing the name of the module,

* acomment containing your name, and

* acomment containing the date that your module was last modified

WEEK 2 LAB EXERCISE

1. Create a Python module lab01.py. In this module, let's go with a simple, and classic, numeric
function: write a Python function fahr_to_cels that will accept a Fahrenheit temperature as its single
parameter, and return (not print!) a Celsius temperature as output. Be careful --- it should behave
itself whether the argument is an integer or a floating point value. (You do not have to actually test
the argument type for this one; just make sure you devise a computation that works for either
integers or floating point values.)
(Not sure of the formula? Google works quite nicely for looking up such things...)
Now, you can and should test your function within the python interpreter until you are confident
that it works.

2. ..and now, you are going to create file output that demonstrates that it works. In a separate module

lab01_test.py:

* write the proper command that it would take to allow you to call your fahr_to_cels function
within this module (without redefining the function in this file!)

* write a print statement that prints a string that includes the testing call you are about to make
along with the value you expect it to return, and then write another print statement that prints
the result of actually making that call. (That is, in your output you'll see one line that says what
you are about to call and what it should return, and in the next line you'll see what that call
actually returned.)

Do this for at least 3 different calls of your function. (That will mean at least 6 lines in your
output.)

* Then, at the command line, try:
python lab0l test.py
Don't like what you see? Then tweak 1lab01.py/labO1 _test.py until you do.
Then, create an output file by doing:

python lab0l test.py > labOl test.out

CIS 480 - Python - Homework #1 and Week 2 Lab Exercise p.2
Fall 2005

3.

Now, write you name on the "Next:" list on the board. When I reach your name, I will come and
check your lab01.py, lab01 test.py, and labO1 test.out files.

All of the above must be completed by the end of your lab hour.

HOMEWORK #1

Create a Python module hw01.py. Within it, include the following:

1.

10
12

Let's start with an (admittedly bizarre) function multiples_in_range that takes a numeric value, a
beginning value, and and ending value as arguments. It prints, one per line, each of the values of the
numeric value that fall strictly between the beginning value and the ending value. You can assume
--- without adding code to check --- that all three arguments are positive numbers.

For example, if multiples_in_range is called with the arguments (2, 7, 13), the function would print
the following:

And, of course, test this function within the python interpreter until you are confident that it works.

Now, we're going to create a module that will eventually be used to create file output that
demonstrates that multiples_in_range works. In a separate module hw01_test.py:

* write the proper command that it would take to allow you to call your multiples_in_range
function within this module (without redefining the function in this file!)

* write a print statement that prints a string that includes the testing call you are about to make
and a list of the values that you expect it to print, and then simply make that call. (NOTE that
this testing call doesn't need to be part of a print statement --- this is a function that happens to
have printing as a side effect!)

Do this for at least 3 different calls of your function.

You should, of course, test hw01_test.py until you are comfortable with it. You should wait to
create an output file, however; we're going to add more functions and more tests to hw01.py and
hwO01 _test.py.

Here's another "classic", to test your branching chops in Python. Within the module hw01.py, write
a function grade which takes a numeric grade as argument, and returns (NOT prints!) the
corresponding letter grade A, B, C, D, or F as its result.

You are required to use a single if statement in determining the letter grade --- you may neot use 5
separate if statements. You do not have to check grade's argument for reasonableness, either. (Use
the classic grading scale --- >= 90 is an A, >=80 and <90 is B, >=70 and <80 is C, >=60 and <70 is
D, and <60 is F).

And, of course, test this function within the python interpreter until you are confident that it works.

FOR a 5 POINT BONUS: within your grade function, after you've determined the base letter

CIS 480 - Python - Homework #1 and Week 2 Lab Exercise p.-3
Fall 2005

(NOT as part of that determination), concatenate a plus or minus to the base letter if it is
appropriate, assuming that >= X7 is a plus version of that grade, and >= X0 and < X3 is a minus
version of that grade, returning the resulting letter grade as grade's result. Note that you must meet
the additional requirements mentioned in #4 below to receive all of the 5 points.

4. Now, we're going to add to hw01_test.py to demonstrate that grade works, too. To hw01_test.py,
add the following:

* write a print statement that prints a string that includes the testing call you are about to make
and the letter grade you expect it to return, and then print the results of making that call.
(Rhetorical question: do you understand why grade's call needs to be part of a print statement
here, but multiples_in_range's call in #2 did not need to be?)

Do this for at least 5 different calls of your function (making sure that each possible letter
grade results at least once, so that you've tested each branch).

* (if you are trying for the 5 point bonus in #3, make sure at least one of those tests results in a
grade that ends in +, at least one results in a grade that ends in -, and at least one results in a

grade that ends in neither + not -.)

You should, of course, test hw01_test.py again to try out your new tests until you are comfortable
with it. But, don't create an output file, yet, because there's a bit more to add.

5. Let's conclude HW #1 with a function that takes better advantage of Python's dynamic typing.

First, a note: I strongly suspect that we'll have a more elegant way of testing for this soon, but note
that both of the following allow me to test if a value is an integer:

val = 3
if type(val) == type(0):

print "val is an integer!"
else:

print "val is not an integer!"

val = 7

if str(type(val)) == "<type 'int'>":
print "val is an integer!"

else:

print "val is not an integer!"

The built-in function str() returns a string version of its argument. So, for example, str(37) would
return '37' (the string containing the characters 3 and 7). Also, note that + can be used to
concatenate two strings... (but, unlike Java, they really have to be strings --- string + doesn't do
automatic string conversion like Java does...)

Keeping the above in mind, in hw01.py, write a function bump_it that, if given an integer, returns a
value that is one more than that integer, if given a floating point number, returns a value that is .1
more than that floating point number, and if given a string, returns a string that is the same except
that it has had an exclamation point concatenated to the end of it. For an argument of any other type
passed to it, it should return the argument passed to it.

As always, test this function within the python interpreter until you are confident that it works.

CIS 480 - Python - Homework #1 and Week 2 Lab Exercise p.- 4
Fall 2005

6. Finally, add to hwO01_test.py to demonstrate that bump_it works, too. To hw01_test.py, add the
following:

* write a print statement that prints a string that includes the testing call you are about to make
and the value you expect it to return, and then print the results of making that call.

Do this for at least 4 different calls of your function (making sure that you include at least one
test each with an integer argument, a floating-point argument, a string argument, and some
other kind of argument. (hint: if you add an L to the end of a sequence of digits, you get a
literal that is of type long...)

You should, of course, test hw01_test.py again to try out your new tests until you are comfortable
with it.

And, when you are satisfied, now you should create a submittable output file hw01 _test.out:
python hwOl test.py > hwOl test.out

By the due date and time given at the beginning of this handout, use ~st10/480submit to submit your
final versions of hw01.py, hw01_test.py, and hw01_test.out

(And remember --- you can submit more than one version of these before the deadline, if inspiration
strikes after a submission. As the syllabus notes, I'll simply grade the latest version that was submitted
before the deadline.)

