
CIS 480 - Python - Homework #2 and Week 3 Lab Exercise p. 1
Fall 2005

CIS 480 - Python - Fall 2005
WEEK 3 LAB EXERCISE and Homework #2

week 3 lab exercise due: Thursday, September 8th, END of lab
HW #1 due: Thursday, September 15th, 12:00 noon

Until I develop more formal opening comment block standards (which I plan to do), begin each python
module that you write with at least the following opening comments:

* a comment containing the name of the module (the file name of the module, please --- lab03.py, for
example)

* a comment containing your name, and
* a comment containing the date that your module was last modified

WEEK 3 LAB EXERCISE

For this lab exercise, you are encouraged to check your answers with classmates. In fact, you are
required to do so with at least one classmate who has not yet had his/her work checked yet before you
have me check your work; write the name(s) of those you checked your work with below:

_______________________________________________________________________________

_______________________________________________________________________________

(The point here is to have to argue, er, discuss with others why your answers are correct if they think
they are not, or why others' are not correct if they think they are, but you do not...)

1. Answer the following questions in the space provided:

* Write an example of a Python raw string _____________________________________

* Write an example of a Python Unicode string
______________________________________

* Write an example of a Python multiline block string

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

* Write an example of a Python string literal that contains a backslash character.

______________________________________

* Write an example of a Python string literal that contains a single-quote character.

______________________________________



CIS 480 - Python - Homework #2 and Week 3 Lab Exercise p. 2
Fall 2005

* Write an example of a Python string literal that contains a double-quote character.

______________________________________

* Write an example of a Python string literal that contains a newline character.

______________________________________

2. Assume that client_name is a Python variable to which a string literal has already been assigned.
Write the specified expression using client_name in the space provided:

* write an expression whose value would be the length of client_name

______________________________________

* write an expression that would be the string resulting if you repeated client_name's contents
seven times

______________________________________

* write an expression that would be the 8th letter in client_name (assuming that client_name's
length is at least 8!)

______________________________________

* write an expression that would be the last letter in client_name --- WITHOUT knowing its
length! (You may not call a function that gives you its length, for example --- I want you to
show me an alternate approach to this.)

______________________________________

* write an expression that would be the slice of client_name including from the 3rd character to
the 6th character, inclusive (again, we are assuming that client_name has at least 6
characters).

_______________________________________

* write an expression that would be the slice of client_name including its first 5 characters.

_______________________________________

* write an expression that would be the slice of client_name starting at its 5th character and
going to the end of client_name (WITHOUT specifically making any reference to its length).

_______________________________________

3. Although we didn't discuss them in lecture on Tuesday, strings in Python have a rich set of methods
associated with them. (A method is a function associated with an object...) That is, for any string
expression --- literal or variable or expression resulting in a string! --- you can type that expression,
then a period, then the method name, and then parentheses (containing arguments if needed) to call
that method for that string.

What in the heck do I mean? Well, for example, there is a string method upper(). It returns a



CIS 480 - Python - Homework #2 and Week 3 Lab Exercise p. 3
Fall 2005

version of the calling string all converted to uppercase. That is,

>>> 'hello'.upper()
'HELLO'
>>> name = 'anna'
>>> name.upper()
'ANNA'
>>> name
'anna'

(Notice how the calling string itself was not changed --- the upper() method returned a new string
modified as I described.)

There's a table (Table 5-4) of the built-in string methods on p. 91 of Learning Python.

So, what do I want you to do for the lab exercise?

I want you to create a module lab03.py, and write a function yell_it in this module. yell_it should
expect one argument. If...

* ...the argument is a string, that string should be printed to the screen in all-uppercase letters
followed by three exclamation points;

* ...the argument is a floating point number, it should be printed to 3 fractional places (hint: try
the format%.3f for this...) followed by three exclamation points;

* ...the argument is anything else, just print it to the screen followed by three exclamation points.

We're going to add quick-n-sleazy test calls of yell_it directly to lab03.py. You see, if you've just
defined a function in a module, you can call it in that module without preceding it by the module
name (although this is "icky" for convenient re-use of this module and function, so NORMALLY we
won't do it...) But, for lab convenience, after you have typed yell_it's definition in lab03.py, skip a
line, and then type in four calls to yell_it:

* one with a string value of your choice, then
* one with a floating point number with 1 fractional place, then
* one with a floating point number with at least 5 fractional places, and then
* one with any non-string and non-floating-point argument of your choice.

When this runs like you would like, check your work with at least one classmate, and then write
your name on the 'Next:' list on the board to get your work checked.

All of the above must be completed before the end of your lab time.

HOMEWORK #2

Create a Python module hw02.py. Within it, include the following:

1. Write a function nickname. nickname expects one string parameter, a name for which it will
generate a goofy nickname, meeting the following requirements:

* if the length of the name passed is less than 5 letters, it will simply return the original name as



CIS 480 - Python - Homework #2 and Week 3 Lab Exercise p. 4
Fall 2005

the nickname;

* if the length of the name passed is 5 or more, it will grab the first 5 letters to begin the
nickname, and:

* ...if the 5th letter of the name is a y, strip off the y and return the result as the nickname;

* ...otherwise, add y to the end of the nickname-so-far and return the result as the
nickname;

For example,

>>> import hw02
>>> print hw02.nickname('Sally')
Sall
>>> print hw02.nickname('ed')
ed
>>> print hw02.nickname('Horatio')
Horaty
>>> print hw02.nickname('elizabeth')
elizay

In a separate module hw02_test.py:

* import the hw02.py module,
* write a print statement that gives the actual call you are about to make and what it SHOULD

return, before a print statement printing the actual result of that call --- for example,

print "hw02.nickname('ed') should return ed:"
print hw02.nickname('ed')

...for each of at least three different testing calls:

* at least one with a name of less than 5 characters,
* at least one with a name of >= 5 characters but with a y as the 5th character,
* at least one with a name of >= 5 characters but with a non-y as the 5th character

2. Note that string method isupper() returns True if all of the characters in the calling string are
uppercase; it returns false otherwise. For example,

>>> 'HELLO'.isupper()
True
>>> greeting = 'Hi'
>>> greeting.isupper()
False
>>> 'hi'.isupper()
False

islower() works analogously for returning if a string is all-lowercase. And, like upper() returns a
version of the calling string in all-uppercase characters, lower() returns a version of the calling
string in all-lowercase characters.



CIS 480 - Python - Homework #2 and Week 3 Lab Exercise p. 5
Fall 2005

Write a function flip_it that expects a string argument.
* If this argument is in all-uppercase, it should return a version of the argument in all-lowercase.

* If the argument is in all-lowercase, it should return a version of the argument in all-uppercase.

* What if it is neither all-uppercase nor all-lowercase? Then, look at its first character's case.

* If the first character is uppercase, return a version of the argument where only the FIRST
letter is changed to lowercase, and the rest are returned unchanged.

* If the first character is lowercase, return a version of the argument where only the FIRST
letter is changed to uppercase, and the rest are returned unchanged.

Add to module hw02_test.py:

* write a print statement that gives the actual call you are about to make and what it SHOULD
return, before a print statement printing the actual result of that call --- for example,

print "hw02.flip_it('hello') should return HELLO:"
print hw02.nickname('hello')

...for each of at least four different testing calls:

* at least one with an argument that is all-uppercase,
* at least one with an argument that is all-lowercase,
* at least one with an argument that is mixed case, but begins with a lowercase letter,
* at least one with an argument that is mixed case, but begins with an uppercase letter.

3. Let's do some gentle string formatting practice. Write a function amt_due that expects a quantity of
items and a price per item as its arguments. But, instead of just returning the amount that would be
due for that quantity of items at that price per item, it will return a string: that amount formatted in
dollars and cents, beginning with a dollar sign ($) and always printed to two fractional places.

That is,

>>> hw02.amt_due(3, 2)
'$6.00'
>>> hw02.amt_due(3.5, 2.25)
'$7.88'

Add to module hw02_test.py:

* write a print statement that gives the actual call you are about to make and what it SHOULD
return, before a print statement printing the actual result of that call --- for example,

print "hw02.amt_due(3, 2) should return $6.00:"
print hw02.amt_due(3, 2)

...for each of at least two different testing calls:

* at least one whose two arguments happen to be integers
* at least one whose two arguments will result in a product with at least 3 fractional places



CIS 480 - Python - Homework #2 and Week 3 Lab Exercise p. 6
Fall 2005

----------------------------------------------------------------------------------------------------------------
BONUS - UPTO 10 points

Within hw02.py, write a function that makes practical use of up to five of the string methods on p. 91,
Table 5-4 that were not mentioned anywhere in this handout nor that you used in problems #1, #2, or #3.

Then, within hw02_test.py, write a print statement that gives the actual call you are about to make and
what it SHOULD return, before a print statement printing the actual result of that call, for the number of
testing calls that you feel adequately show off your function and its capabilities.

(Note that you'll have to research how some of these work --- www.python.org would probably be a good
place to start on these, if the textbook isn't immediately helpful...)

You'll receive up to 2 bonus points for each 'new' method --- up to five --- that your function uses in a
practical way (as long as you also adequately test your function in your provided example calls in
hw02_test!)

Really nifty functions may be showed off to the rest of the class, if I choose to do so.
----------------------------------------------------------------------------------------------------------------

And, when you are satisfied, you should create a submittable output file hw02_test.out:

python hw02_test.py > hw02_test.out

By the due date and time given at the beginning of this handout, use ~st10/480submit to submit your
final versions of hw02.py, hw02_test.py, and hw02_test.out

(And remember --- you can submit more than one version of these before the deadline, if inspiration
strikes after a submission. As the syllabus notes, I'll simply grade the latest version that was submitted
before the deadline.)


