CIS 480 - Python - Homework #3 and Week 4 Lab Exercise p.1
Fall 2005

CIS 480 - Python - Fall 2005
WEEK 4 LAB EXERCISE and Homework #3

week 4 lab exercise due: Thursday, September 15th, END of lab
HW #3 due: Thursday, September 22nd, 12:00 noon

Until I develop more formal opening comment block standards (which I plan to do), begin each python module
that you write with at least the following opening comments:

* acomment containing the name of the module (the file name of the module, please --- lab04.py, for

example)
a comment containing your name, and
a comment containing the date that your module was last modified

WEEK 4 LAB EXERCISE

For this lab exercise, you are encouraged to check your answers with classmates. In fact, you are required to do
so with at least one classmate who has not yet had his/her work checked yet before you have me check your work;
write the name(s) of those you checked your work with below:

(The point here is to have to argue, er, discuss with others why your answers are correct if they think they are
not, or why others' are not correct if they think they are, but you do not...)

1. Answer the following questions in the space provided:

* Write an example of a Python empty list literal:

* Write an example of a Python non-empty list literal:

2. Assume that price_list is a Python variable to which a list literal has already been assigned, and that it
currently contains at least 10 (top-level) items.
* write an expression whose value would be the number of (top-level) items in (or, the length of)
price_list

write an expression that would be the list resulting if you repeated price_list's contents seven times

write an expression that would be the 8th item in price_list

write an expression that would be the last item in price_list --- WITHOUT knowing price_list's length!
(You may not call a function that gives you its length, for example --- I want you to show me an
alternate approach to this.)

write an expression that would be the slice of price_list including from the 3rd item to the 6th item,
inclusive.

CIS 480 - Python - Homework #3 and Week 4 Lab Exercise p.2

Fall 2005

write an expression that would be the slice of price_list including its first 5 items.

write an expression that would be the slice of price_list starting at its Sth item and going to the end of
price_list (WITHOUT specifically making any reference to its length).

write a statement that would replace the 7th item in client_list with the float value 9.99.

write a statement that would replace the 3rd through the 6th items, inclusive, in price_list with the
items 1.99 and 2.99. (Note that the length of price_list should decrease by two as a result...)

write an expression that would be true if 99.89 is an element within price_list.

Assume that price_sum is a variable that has been set to 0.0. Write a for-loop that, when finished, will
have set price_sum to be the sum of the (assumed-to-be-numeric) items in the list price_list.

3. We did get a chance to sample a few list methods in Tuesday's lecture. Still assuming that price_list is a
Python list variable that currently contains at least 10 items...

()

(b)

(©)

@

write an expression whose value would be the number of times that the item 1.99 occurs within
price_list.

write a single expression which will remove the item at the end of price_list and return it as its value.

write a statement that will add the price 39.98 to the end of price_list.

write a statement that will sort price_list in-place.

CIS 480 - Python - Homework #3 and Week 4 Lab Exercise p.-3
Fall 2005

4. There were some interesting string methods that we skipped back in Chapter 5 because they involved lists.
But, now that we have lists, it is appropriate to bring them up.
split [Learning Python, p. 92) "chops up a string into a list of substrings"

If you call the string method split with no arguments, it returns a lists that is the result of splitting up the
calling string based on whitespace ... any whitespace is assumed to mark the end of one string and the
beginning of the next. That is,

>>> name = 'Cleese Gilliam\tChapman Idle \t Jones'
>>> print name

Cleese Gilliam Chapman Idle Jones

>>> actors = name.split ()

>>> actors

['Cleese', 'Gilliam', 'Chapman', 'Idle', 'Jones']
>>> name # unchanged, of course

'Cleese Gilliam\tChapman Idle \t Jones'

And, the string method join can take a list as argument, and it returns a new string consisting of the list
elements separated by copies of the calling string:

>>> ' '.join (actors)

'Cleese Gilliam Chapman Idle Jones'

>>> 'SPAM'.join (actors)
'CleeseSPAMGilliamSPAMChapmanSPAMIdleSPAMJones'

NOW that you know this...

Create a module lab04.py, and in it write a function words_in_order. words_in_order expects a single
string of words as its argument. It should split these words into a list (based on white space), convert all the
words in the list into all-lowercase, sort the resulting list in-place, and then join the sorted list into a string
such that the sorted words are separated by a comma and a blank. That is,

>>> lab04.words in order ('The rain in Spain stays mainly in the plain')
'in, in, mainly, plain, rain, spain, stays, the, the'

(HINT: I found it easier to create a new empty list and then add each "lowered" word to the new list, rather
than trying to convert each word in a list into lowercase "in place". Your mileage may vary.)

Then create a module lab04_test.py. In this module:

import the lab04.py module,
write print statement(s) that give the actual call you are about to make and what it SHOULD return,
before a print statement printing the actual result of that call --- for example,

print "lab04.words in order ('The rain in Spain stays mainly in the plain')"
print " should return: "

print "in, in, mainly, plain, rain, spain, stays, the, the"

print lab0O4.words in order ('The rain in Spain stays mainly in the plain')

...for each of at least TWO different testing calls (one of which must be the above call).

When this runs like you would like, check your work with at least one classmate, and then write your name
on the 'Next:' list on the board to get your work checked.

All of the above must be completed before the end of your lab time.

CIS 480 - Python - Homework #3 and Week 4 Lab Exercise p.- 4
Fall 2005

HOMEWORK #3

Create a Python module hw03.py. Within it, include the following:

1.

Write a function pig_latin. pig_latin expects one string parameter, assumed to be a word, and it returns a
new string that is the passed string converted into Pig Latin.

These will be the requirements for this particular Pig Latin dialect:

* if the passed string begins with a vowel, return a string that has -ay concatenated to the end.
(hwO3.pig latin('apple') == 'apple-ay')

else if the passed string begins with a consonant followed by an h, return a string that has the first two
letters removed, and has a dash, those two letters, and ay concatenated to the end
(hwO3.pig latin('chat') == 'at-chay')

* else return a string that has the first letter removed, and has a dash, that first letter, and ay concatenated
to the end

(hw03.pig latin('dog') == 'og-day')
HINTS: remember the in operator, and how useful slices can be...
In a separate module hw03_test.py:
import the hw03.py module,
write a print statement that gives the actual call you are about to make and what it SHOULD return,

before a print statement printing the actual result of that call --- for example,

print "hwO3.pig latin('apple') should return apple-ay:"
print hw0O3.pig latin('apple')

...for each of at least three different testing calls:

at least one with a word that begins with a vowel,

at least one with a word that begins with a consonant followed by an h,
* at least one with a word that begins with a consonant not followed by an h.
Write a function pig_list that expects a single list of strings as its argument. It should assume that each string
in the list is a single word, and is required to call pig_latin appropriately to create, and then return, a new list
that contains the argument-list words each transformed into its pig-latin equivalent.

Add to module hw03_test.py:

* write print statement(s) that give the actual call you are about to make and what it SHOULD return,
before a print statement printing the actual result of that call --- for example,

print "hwO3.pig list(['hello', 'should', 'ivory']) should return: "
print "['ello-hay', 'ould-shay', 'ivory-ay'l"
print hw0O3.pig list(['hello', 'should', 'ivory'l])

...for each of at least two different testing calls.

CIS 480 - Python - Homework #3 and Week 4 Lab Exercise

p-5
Fall 2005

3. Write a function strip_punct. It expects a single string of words, sentences, or phrases as its argument. It
returns a new version of the passed string changed such that:

any apostrophes (') are removed; (replacing each with the empty string can work nicely);
any dashes (-) are removed;
any remaining non-alphabetic, non-white-space characters are replaced with blanks;

(hints: play with or read up on string methods isalpha and isspace... And remember that Python's
boolean operator is not)

* X ¥ %

Add to module hw03_test.py:

* write print statement(s) that give the actual call you are about to make and what it SHOULD return,

before a print statement printing the actual result of that call --- for example,

print "hwO3.strip punct('I don\'t think so, Bucky-lad!') should return: "
print "I dont think so Buckylad "

print hwO3.strip punct('I don\'t think so, Bucky-lad!"')
...for each of at least two different testing calls:

at least one with a string that includes an apostrophe,

at least one with a string that includes a dash,

at least one with a string that includes a non-apostrophe, non-dash, non-white-space character,
at least one with a string that includes white space.

(note that a single testing call could incorporate SEVERAL of the above...!)

* ¥ X %

4. Write a function lower_list that expects a single list of words as its argument. It should return a new version
of that list with all of the words converted to all-lowercase.

Add to module hw03_test.py:
%k

write print statement(s) that give the actual call you are about to make and what it SHOULD return,
before a print statement printing the actual result of that call --- for example,

print "hwO3.lower list(['Hello', 'SHOULD', 'ivory']) should return: "
print "['hello', 'should', 'ivory'l"
print hwO3.lower list(['Hello', 'SHOULD', 'ivory'l])

...for each of at least two different testing calls:
* at least one including a word that is in all-uppercase,

at least one including a word that is in mixed-case,

at least one including a word that is in all-lowercase.

(note that a single testing call could incorporate SEVERAL of the above...!)

*
%

Finally, write a function pig_latinize. It should expect a single string (expected to consist of words, phrases,
or sentences) as its argument. It should create and return a pig-latinized version of the string by:

appropriately using strip_punct to "clean up" the passed string,

splitting on white space to get a list of words,

appropriately using lower_list to get a list of the words in all-lowercase,
appropriately using pig_list to obtain a list of the words in pig-latin form,

* % ¥ *

CIS 480 - Python - Homework #3 and Week 4 Lab Exercise p. 6
Fall 2005

* joining the list of pig-latin words back into a string (with the pig-latin words separated by a blank) and
returning the resuling string.

Add to module hw03_test.py:

* write print statement(s) that give the actual call you are about to make and what it SHOULD return,
before a print statement printing the actual result of that call --- for example,

print "hw03.pig latinize('Don\'t eat dog-food, Charlie') "
print " should return: "

print 'ont-day eat-ay ogfood-day arlie-chay'

print hwO3.pig latinize('Don\'t eat dog-food, Charlie')

...for each of at least two different testing calls:

at least one including a string with consecutive blanks,

at least one including a string with a single quote,

at least one including a string with a dash,

at least one including a string with other punctuation,

at least one including a word containing mixed case,

at least one including a word that begins with a vowel,

at least one including a word that begins with a consonant followed by an h,

at least one including a word that begins with a consonant not followed by an h.
(note that a single testing call could incorporate SEVERAL of the above...!)

* X X X X X ¥ ¥

BONUS - UP TO 10 points

Within hw03.py, write a function fib_create that takes a length as its single argument, and returns a list of
Fibonacci numbers of that length (starting with the elements 1 and 1 if the given length is at least 2) as its result.
You may write and use additional "helper" functions as you'd like; you may NOT change the number of arguments
to fib_create. Be warned that I started playing with this for this homework, then decided it was going to be, ah,
more complicated than I wanted, and abandoned the attempt before I came up with a solution. So, I don't know at
this point if this is really a reasonable function to ask you to write or not (thus, it is a bonus!)

Then, within hw03_test.py, write a print statement that gives the actual call you are about to make and what it
SHOULD return, before a print statement printing the actual result of that call, for the number of testing calls that

you feel adequately shows off your fib_create function and its capabilities.

Really nifty functions may be shown off to the rest of the class, if I choose to do so.

And, when you are satisfied, you should create a submittable output file hw03_test.out:
python hwO3 test.py > hwO3 test.out

By the due date and time given at the beginning of this handout, use ~st10/480submit to submit your final
versions of hw03.py, hw03_test.py, and hw03_test.out

(And remember --- you can submit more than one version of these before the deadline, if inspiration strikes after a
submission. As the syllabus notes, I'll simply grade the latest version that was submitted before the deadline.)

