
CIS 480 - Python - Homework #5 and Week 7 Lab Exercise p. 1
Fall 2005

CIS 480 - Python - Fall 2005
WEEK 7 LAB EXERCISE and Homework #5

week 7 lab exercise due: Thursday, October 6th, END of lab
HW #5 due: Thursday, October 13th, 12:00 noon

Until I develop more formal opening comment block standards (which I plan to do), begin each python module
that you write with at least the following opening comments:

* a comment containing the name of the module (the file name of the module, please --- lab06.py, for
example)

* a comment containing your name, and
* a comment containing the date that your module was last modified

WEEK 7 LAB EXERCISE

For this lab exercise, you are encouraged to check your answers with classmates. In fact, you are required to do
so with at least one classmate who has not yet had his/her work checked yet before you have me check your work;
write the name(s) of those you checked your work with below:

_______________________________________________________________________________

(The point here is to have to argue, er, discuss with others why your answers are correct if they think they are
not, or why others' are not correct if they think they are, but you do not...)

1. Answer the following questions in the space provided:

(a) What Python function returns a file object, ready to be used for reading, writing, or appending?

__________________________________

(b) Write a call of your answer to (a) that will open a file in the current working directory named
tps_report57.txt for reading, assigning the returned file object to a variable tps_in.

_______________________________________________________________________

(c) Write a call of your answer to (a) that will open a file in the current working directory named
letter_stats.txt for writing, assigning the returned file object to a variable letters_out.

_______________________________________________________________________

(d) Now use tps_in in a statement that will read the next line from tps_report57.txt into a variable
next_line.

_______________________________________________________________________

(e) And, use letters_out in a statement that will write the contents of the string variable next_char_stats
into the file letter_stats.txt.

_______________________________________________________________________

(f) Write a the two statements that, according to course style standards, we should write when we are
finished reading from tps_report57.txt and letter_stats.txt.



CIS 480 - Python - Homework #5 and Week 7 Lab Exercise p. 2
Fall 2005

2. Write a function make_spamfile that will ask the user (interactively) for the name of a file (in the current
working directory) in which it should repeatedly write the word 'spam', and then ask how many times it
should write 'spam'. It should then write 'spam' that many times into a file of that name, following course
style standards.

When this runs like you would like, check your work with at least one classmate, and then write your name
on the 'Next:' list on the board to get your work checked.

All of the above must be completed before the end of your lab time.

HOMEWORK #5
Create a Python module hw05.py. Within it, include the following:

0. Import the module hw04.py; we'll be using some of its functions in this homework.

1. Remember ct_letter_freq from HW #4, problem #1? and freq_bar_chart, for HW #4, problem #2?

Write a function show_file_ct that:
* asks the user for the name of a file in the current working directory whose letter frequencies he/she

desires,

* slurps all of that file's contents into a single string, [yes, I know this is dangerous if the file is too big.
But, it's file method practice.]

* uses ct_letter_freq to create a dictionary of the letter frequencies from that file using that single string.

* prints to the screen a message including the name of the file, and then



CIS 480 - Python - Homework #5 and Week 7 Lab Exercise p. 3
Fall 2005

* uses freq_bar_chart to then display the letter frequencies for that file.

This is very interactive, so you do not need to add tests to it to hw05_test.py. (You should test it yourself
until you are satisfied that it works, however!) I'll just have to test it myself to verify this... 8-)

2. But, what if you'd like to keep these letter frequencies for some other purposes?

Write a function save_letter_freq that:
* expects three parameters:

* a dictionary of letter frequencies, and

* a string containing the name of the file from which these letter frequencies were computed, and

* the name of a file (to be in the current working directory) in which these letter frequencies are to
be saved.

* It should create a file (named based on the 2nd parameter) that contains:
* on its first line: the name of the file from which these frequencies were computed,

* on each subsequent line: one of the letters, then a space, then that letter's frequency.

Again, this is very interactive, so you do not need to add tests to it to hw05_test.py. (You should test it
yourself until you are satisfied that it works, however!) I'll just have to test it myself to verify this... 8-)

3. Now that we have save_letter_freq, it would be nice to offer that option to our users of show_file_ct,
wouldn't it?

ADD the following to your function show_file_ct:
* before it ends, ask the user IF he/she would like the letter frequencies saved to a file.

* If so --- it should ask for what file, and call save_letter_freq appropriately.

Again --- too interactive to easily test in a hw05_test.py (yet, anyway).

4. And, of course, we need some file-reading practice. So, write a function freq_from_file that:
* expects one parameter: a string, the name of a file in the current directory which you can ASSUME is

properly filled with letters and frequencies (as produced by save_letter_freq).

* It should return a dict that is filled with these letter frequencies.

* (remember: for this function, at least, it'll ignore the "source" file name that's one the first line of this
file...)

This isn't interactive, but there's no time to plug in the proper testing verbiage here, so you've lucked out.
No hw05_out.py required.

5. And, a little more file-reading practice. Write a function display_saved that takes as its argument a file
name, that can be assumed to be in the current directory and be formatted like save_letter_freq creates.

It'll do what it needs to do to call freq_bar_chart (from HW #4, #2) to display that file's frequencies as a bar
chart --- AND precede this chart with the name of the file from which these were computed.



CIS 480 - Python - Homework #5 and Week 7 Lab Exercise p. 4
Fall 2005

Again, you lucked out --- no hw05_test.py this week.

And, when you are satisfied, (and by the due date and time given at the beginning of this handout,) use
~st10/480submit to submit your final version of hw05.py. (And remember --- you can submit more than one
version of these before the deadline, if inspiration strikes after a submission. As the syllabus notes, I'll simply
grade the latest version that was submitted before the deadline.)


