
CIS 480 - Python - Homework #6 p. 1
Fall 2005

CIS 480 - Python - Fall 2005
Homework #6

(note: there is NO Week 8 Lab Exercise, as there is no Week 8 Lab...)

HW #6 due: Thursday, October 20th, 12:00 noon

Until I develop more formal opening comment block standards (which I STILL plan to do), begin each python
module that you write with at least the following opening comments:

* a comment containing the name of the module (the file name of the module, please --- hw07.py, for
example)

* a comment containing your name, and
* a comment containing the date that your module was last modified

HOMEWORK #6
Create a Python module hw06.py. Within it, include the following:

1. Since we talked about types in Python this week, writing some predicate functions that let us know if
arguments are certain types seems appropriate. (For our purposes, a predicate function is one that returns the
bool value True or the bool value False.)

First: write a predicate function single_letter_key_dict. It takes any single argument, and returns the bool
value True if that argument is a dict whose keys are all single-letter strings, and returns the bool value False
otherwise. Note that it cannot "refuse" or fail for any single argument that is passed to it; it simply returns
True or False.

In a separate module hw06_test.py:

* import the hw06.py module,
* IN HONOR of having discussed == for the SECOND time, we are going to use it to now

STREAMLINE at least some of our Python tests.

* The idea: we are going to directly compare each call to the desired value when we can, and only print
the result of the comparison --- then, when you run a test module, if you see a bunch of True's printed
to the screen, then you know the tests pasts. Any False's, and you know that one or more tests failed.

* SO: write a print statement that says, testing single_letter_key_dict.
* THEN, write a print statement that says, "True == Passed, False == Failed"
* and then, write a print statement that compares a call to single_letter_key_dict to its expected value.

For example,

print "Testing single_letter_key_dict:"
print " (True == Passed, False == Failed)"
print ""
print hw06.single_letter_key_dict('George') == False
print hw06.single_letter_key_dict({'a':3, 'b':(1, 2, 3)}) == True

...for testing calls involving at least 2 arguments of different non-dict types, and at least 2 arguments
that are dict's, at least one which returns True and at least one that return False.

2. Now, for a second predicate. Write a predicate function all_int_values_dict that takes any single argument,
and returns the bool value True if that argument is a dict whose values are all integer values, and returns the



CIS 480 - Python - Homework #6 p. 2
Fall 2005

bool value False otherwise. Again, it cannot "refuse" any single argument that is passed to it; it simply
returns True or False.

Add to module hw06_test.py:

* write a print statement that says, testing all_int_values_dict.
* THEN, write a print statement that says, "(True == Passed, False == Failed)"
* and then, write a print statement that compares a call to all_int_values_dict to its expected value. For

example,

print "Testing all_int_values_dict:"
print " (True == Passed, False == Failed)"
print "---------------------------------------"
print hw06.all_int_values_dict('George') == False
print hw06.all_int_values_dict({'a':3, 'b':(1, 2, 3)}) == False
print hw06.all_int_values_dict({'a':3, 'b':148}) == True

...for testing calls involving at least 2 arguments of different non-dict types, and at least 2 arguments
that are dict's, at least one which returns True and at least one that return False

3. Now, for the reason predicates in questions #1 and #2 exist...

Write a predicate function is_letter_freq_dict that returns the bool value True if its parameter is a dictionary
consisting of keys which are single-letter strings and values which are integers; otherwise, it returns the bool
value False. (That is, it tells us whether or not its argument is something structured like out letter-frequencies
from HW #5.) As with #1's and #2's predicates,, it cannot "refuse" any single argument that is passed to it; it
simply returns True or False.

Note that is_letter_freq_dict is required to appropriately use single_letter_key_dict and all_int_values_dict.

Add to module hw06_test.py:

* write a print statement that says, testing is_letter_freq_dict.
* THEN, write a print statement that says, "(True == Passed, False == Failed)"
* and then, write a print statement that compares a call to is_letter_freq_dict to its expected value. For

example,

print "Testing is_letter_freq_dict:"
print " (True == Passed, False == Failed)"
print "---------------------------------------"
print hw06.is_letter_freq_dict('George') == False
print hw06.is_letter_freq_dict({'a':3, 'b':(1, 2, 3)}) == False
print hw06.is_letter_freq_dict({'a':3, 'bob':48}) == False
print hw06.is_letter_freq_dict({'a':3, 'b':148}) == True

...for testing calls involving at least 2 arguments of different non-dict types, and at least 3 arguments
that are dict's, at least one which returns True and at least two that return False (for DIFFERENT
reasons...)

I won't make you do anything with it here --- but can you see how this might type of predicate might improve
the robustness of a function such as freq_bar_chart, that expects such a dict as its argument? It could call
this predicate as its first action, and take appropriate (customized) action if its argument is inappropriate.



CIS 480 - Python - Homework #6 p. 3
Fall 2005

4. Since we don't have a lab exercise to do it --- we need something to dabble in references and copies and
deep-copies, oh my. But we need a couple of helper functions to get us there.

FIRST: Write a predicate function is_compound. It returns bool value True if its argument is a list, tuple, or
dict; it returns False otherwise. (We are not considering strings to be "compound", for our purposes here.)

Test it in hw06_test.py as you tested the functions from problems #1 - #3; test it on at least a list, a tuple, a
dict, and on at least two arguments of different types that are neither list, tuple, nor dict.

5. Now write a predicate function has_compound_components that uses is_compound in its task of returning
the bool value True if its single argument is a list, tuple, or dict that has at least one nested list, tuple, or dict
within it. It returns the bool value False otherwise.

(Careful --- you need to check BOTH the keys AND the values, in the case of a dict argument...)

Test it in hw06_test.py as you tested the functions from problems #1 - #3; test it on at least:
* one list with a nested list-or-tuple-or-dict within it,

and one list without;
* one tuple with a nested list-or-tuple-or-dict within it,

and one tuple withou;
* one dict with a nested tuple as a key,

one dict with a nested list-or-dict-or-tuple as a value,
and one dict without either

* at least two arguments of different types that are neither list, tuple, nor dict.

6. Which finally brings us to custom_copy, which returns a copy of its argument meeting the following rather
bizarre specifications (designed for feature-practice!):

* IF the argument is not a list, dict, or tuple, it simply returns the argument. No copying should be
necessary.

* IF the argument is a list, dict, or tuple:
* IF that list, dict, or tuple itself contains any lists, dicts, or tuples, it should return a deep copy

(using the copy module's deepcopy function, as described in lecture and in Chapter 7 of "Learning
Python")

(hint: it works to call import within a function... if it gets called more than once in a Python
session, we know that there's no effect from subsequent calls, anyway...)

* IF it is a tuple or list that does NOT contain any lists, dicts, or tuples, it should return a copy using
an empty-limit slice (as described in lecture and in Chapter 7 of "Learning Python").

* IF it is a dict that does NOT contain any lists, dicts, or tuples, it should return a copy using the dict
copy method.

custom_copy should appropriately use is_compound and has_compound_components, naturally.

This one is tricky to test; we'll kluge some "light"/wimpy tests in a way that gives us an excuse (I think) to
use is. Test it in hw06_test.py as follows, on at least:

* one list with a nested list-or-tuple-or-dict within it; use is to show the returned value is NOT the same
memory, and use == to show the returned value IS equivalent. That is, in hw06_test.py:
L1 = [1, [1, 2]]



CIS 480 - Python - Homework #6 p. 4
Fall 2005

L2 = hw06.custom_copy(L1)
print (L1 is L2) == False
print (L1 == L2) == True
and one list without any nested list-or-dict-or-tuple within; again, use is to show the returned value is
NOT the same memory.

* one tuple with a nested list-or-tuple-or-dict within it,
and one tuple without; use is and == as shown above.

* one dict with a nested tuple as a key,
one dict with a nested list-or-dict-or-tuple as a value,
and one dict without either; use is and == as shown above.

* at least two arguments of different types that are neither list, tuple, nor dict. Use is and == here, too, but
be careful --- when should is be True for these, if ever? (This may depend on your arguments! 8-) )

And, when you are satisfied, you should create a submittable output file hw06_test.out:

python hw06_test.py > hw06_test.out

By the due date and time given at the beginning of this handout, use ~st10/480submit to submit your final
versions of hw06.py, hw06_test.py, and hw06_test.out (And remember --- you can submit more than one version
of these before the deadline, if inspiration strikes after a submission. As the syllabus notes, I'll simply grade the
latest version that was submitted before the deadline.)


