CIS 480 - Python - Homework #8 p.1
Fall 2005

CIS 480 - Python - Fall 2005
Homework #8
HW #8 due: Thursday, November 3rd, 12:00 noon

(The Week 10 lab exercise will be handed out in lab...)

Until I develop more formal opening comment block standards (which I STILL plan to do), begin each python
module that you write with at least the following opening comments:

* acomment containing the name of the module (the file name of the module, please --- hw07.py, for
example)
a comment containing your name, and
a comment containing the date that your module was last modified

HOMEWORK #8
Create a Python module hw08.py. Within it, include the following:

1. Write a function call_with_2 that takes a function as its parameter. It should then return the result of calling
its parameter with --- you guessed it --- the argument 2.

In a separate module hw08 _test.py:

import the hw08.py module,
write a print statement that says, testing call_with_2.
write a print statement that says, ""True == Passed, False == Failed"

* write at least two DIFFERENT functions of YOUR choice that can handle a single numeric argument,
but do DIFFERENT things with it.

* then write print statements comparing calls to call_with_2 with those functions as its arguments to their
expected values.

2. Write a function add_amt_fun that has one parameter, a numeric value, and returns a function that expects
one parameter and tries to have as its value the result of adding add_amt_fun's parameter to the new
function's parameter. (Note: you must use a lambda expression here --- you may not refer to anything
outside of add_amt_fun in its implementation.)

For example, an example of add_amt_fun in action could be as follows:

>>> import hw08

>>> looky = hwO8.add amt fun (4)
>>> looky (3)

5

>>> looky (6)

10

>>> again = hw08.add amt fun(1000)
>>> again (5)

1005

>>> again (-5)

995

CIS 480 - Python - Homework #8 p.2
Fall 2005

In hw08_test.py, test add_amt_fun as you tested the function from problem #1, except FIRST call it at least
twice with different arguments, assigning the results to some variables of your choice, and THEN call the
resulting functions at least twice each, writing print statements comparing the results of those calls to the
expected results.

3. Write a function silly_cale. It interactively asks the user for two values, and then asks 5 times what action the
user would like done to those two values. If the user says 'add’, it prints the result of adding those two
values; if the user says 'subtract’, it prints the result of subtracting those two values; if the users says
'average', it prints the average of those two values, if the user says 'raise' it prints the result of raising the
first value to the power of the second value. If it says anything else, it prints '"Huh? I only know add,
subtract, average, and raise!’

Within silly calc, you must set up and use a dict that has lambda expressions as its keys' values to
implement the needed multiway branch. (Note that those lambda expressions will NOT try to print!
silly_calc will print the results of running the desired lambda expression...)

This being interactive, I'm not sure how to have you test it in hw08_test.py. I'll just have to test your
function interactively myself... 8-)

4. Write a function reduce_all. It should expect two arguments: a list of numbers, and a quantity. It must use
map and a lambda expression to create a new list that consists of the parameter list values each reduced by
the given quantity. Also, if NO quantity is given, the quantity should be assumed to be 1 (that is, specify a
default value for this parameter in its parameter list).

(If done properly, this function's body should consist of only one line --- two lines tops!)
For example,

>>> hwO08.reduce all([3, 6, 9, 12], 4)
(-1, 2, 5, 8]

>>> hwO8.reduce all([5, 2, 3])

(4, 1, 21

In hw08_test.py, test reduce_all as you tested the function from problem #1, calling it for at least 3 different
sets of arguments, at least one of which consists ONLY of a list (that consists of only 1 argument, a list).

5. Now, we are going to write a variant of reduce_all called reduce_all2. This should take a quantity, and then
a variable number of arguments --- it should return a list consisting of the results of reducing all but the first
argument by the amount of the first argument. This one should NOT have a default value for the quantity
parameter.

If written correctly, this should use exactly the same body as reduce_all --- however, it will be CALLED
differently (with the amount to reduce the rest by, then as many values as you'd like; it will NOT expect a list
as argument, or react well if one is given!)

For example,

>>> hw08.reduce all2 (4, 3, 6, 9, 12)
(-1, 2, 5, 8]

>>> hw08.reduce all2(1l, 5, 2, 3)

(4, 1, 2]

CIS 480 - Python - Homework #8 p.-3
Fall 2005

In hw08_test.py, test reduce_all2 as you tested the function from problem #1, calling it for at least 3
different sets of arguments (consisting of different numbers of arguments!)

BONUS PROBLEM - +5 POINTS

Write an interesting/nifty function that has as one of its parameters unmatched keyword arguments
gathered into a dictionary (a **name parameter). Add appropriate tests of your function (in the style of
problem #1) to your hw08 _test.py.

And, when you are satisfied with the above problems, you should create a submittable output file hw08_test.out:
python hw0O8 test.py > hw08 test.out

By the due date and time given at the beginning of this handout, use ~st10/480submit to submit your final

versions of hw08.py, hw08_test.py, and hw08_test.out (And remember --- you can submit more than one version

of these before the deadline, if inspiration strikes after a submission. As the syllabus notes, I'll simply grade the
latest version that was submitted before the deadline.)

