
CIS 480 - Python - Homework #10 p. 1
Fall 2005

CIS 480 - Python - Fall 2005
WEEK 14 LAB EXERCISE and Homework #10

week 14 lab exercise due: Thursday, December 1st, END of lab
HW #10 due: Thursday, December 8th, 12:00 noon

FOR THE MODULE for HW #10:
...start each module with a docstring (as described in lecture) that includes the file name of the module,
your name, the date the module was last modified, and any other documentation/description you'd like
to provide.

For each function in a module, include at least a one-line docstring giving a brief description of that
module.

Make sure that if you run the function help for your module or for a function within your module that
you indeed see your docstrings incorporated.

WEEK 14 LAB EXERCISE
1.

(a) What exception is thrown if you try to import a module that doesn't exist or isn't accessible or
otherwise isn't available?

__

(b) Assume that you are in a position where two modules contain a particular function do_this ---
however, the module first_choice.py has a "better" version than the module second_choice.py
contains.

Write a fragment of Python code appropriately using a try-statement that will try to make just
do_this from first_choice.py available for use; however, if the exception from part(a) is
thrown, then it will try to make just do_this from second_choice.py available instead.

CIS 480 - Python - Homework #10 p. 2
Fall 2005

(c) Let's take this one step further. Assume first_choice.py still has the "best" version of do_this,
and second_choice.py still has the second-best version of do_this. HOWEVER --- if neither
is available, you wish to define a quick-n-sleazy version of do_this, and at least have that
available.

Write a fragment of Python code appropriately using NESTED try-statements that will try to
make just do_this from first_choice.py available for use; however, if the exception from part
(a) is thrown, then it will try to make just do_this from second_choice.py available instead;
however, if the exception from part (a) is thrown THEN, it should define its own version of
do_this instead. (For our practice purposes here, you can make do_this be a function that does,
well, whatever you'd like.)

(d) What exception is thrown if you try to index a dict using a non-existent key?

CIS 480 - Python - Homework #10 p. 3
Fall 2005

2. You will recall that if you use an except: with a try, then it catches any exception (not yet caught
by a previous, more "specific" except).

But --- what if you've used it, and you'd like to know WHAT exception you caught?

If you import module sys, then sys.exc_type will contain the TYPE of the exception throwm and
sys.exc_value will contain the VALUE for the exception thrown.

for example:

>>> import sys
>>> def play(val):
... try:
... return val + 'hi'
... except:
... print "Type of Exception thrown:", sys.exc_type
...

>>> def play2():
... try:
... raise IOError, 13
... except:
... print "Type of Exception thrown:", sys.exc_type
... print "Value of Exception thrown:", sys.exc_value
...
>>>

Type the above in. Then, try the expressions below, and write out what python results in for each:

>>> play('ho')

>>> play(13)

>>> play2()

CIS 480 - Python - Homework #10 p. 4
Fall 2005

HOMEWORK #10
1. Create a new module hw10.py.

Here is a small warm-up: Pretend, for a few moments, that you have forgotten that the dict get
mathod exists.

While a dict method is clearly the more elegant option, you should find that one can write an
analogous function that behaves similarly using a try-statement.

In module hw10.py, write a function get_from_dict. It should take two or three parameters: a
dictionary (required), a desired key (required), and an "optional" default value to be returned if the
given key is not a key in the given dictionary. (The third parameter's should be None --- not a
string, but a NoneType literal --- if no third argument is given.)

get_from_dict MUST use a try-statement appropriately, and it MUST essentially behave like the
dict get method, except that it is a function instead of a dict method.

That is, get_from_dict(mydict, desired_key, default_val)

should behave exactly the same as mydict.get(desired_key, default_val)

Likewise, get_from_dict(mydict, desired_key)

should behave exactly the same as mydict.get(desired_key)

HINT: you can do this in FIVE LINES, NOT counting the docstring!

2. Assume that, SOMETIMES, there is a file in your local directory latest_choice.txt that contains a
string of interest.

In module hw10.py, write a function grab_latest in module hw10.py that tries to open a file
named latest_choice.txt in the current directory and then read and return this string of interest;
however, if this is not possible, it should NOT fail --- instead, it should interactively ask the user for
the string of interest, and then write that resulting string of interest into a file named
latest_choice.txt in the current directory, and then return this string of interest.

3. In support of problem #4, we need a little function. Fortunately, one of the ways that it can be
written can involve using a try-statement.

In module hw10.py, write a function get_arglist. It takes no parameters; instead, it interactively
requests potential arguments from the user. That is, it repeatedly asks the user to enter another
argument, stopping when an argument that it an empty string is entered (which is what raw_input
returns if you type the return/enter key immediately after the prompt).

Remember that raw_input always returns a string; so, you are required to use try-statements to
convert the latest argument to an int or to a float, if possible; if neither is possible, however, it

CIS 480 - Python - Homework #10 p. 5
Fall 2005

should be left as a string. Then, this resulting argument should be appended to an argument list, and
when the user has finished entering arguments, these arguments should be returned as get_arglist's
return value.

(Yes, I know this can be done in other ways --- for example, using regular expressions. But this is a
homework whose purpose is to practice exception-handling, so use of try-statements is required.

For example:

>>> hw10.get_arglist()
Enter an argument: 3
Enter another argument, or hit return to stop: 27.3
Enter another argument, or hit return to stop: hi
Enter another argument, or hit return to stop: 7
Enter another argument, or hit return to stop:
[3, 27.300000000000001, 'hi', 7]

4. Now we'll play around with a little exception-tester, that incorporates an idea or two from earlier in
the semester as well as some exception-handling ideas.

In hw10.py, write a function exc_tester. It expects one parameter, a function. It should use
get_arglist from problem #3 to obtain a list of arguments from the user, and then use the apply
function to apply the parameter function to the argument list returned by get_arglist ---
HOWEVER, it should do this in such a way that, IF an exception is generated in applying this
function to this argument list, exc_tester should catch it and, instead of failing, print a pleasant
message giving the exceptions type and, if it exists, its value.

5. Sigh --- we really haven't done anything with the raise statement yet! So: for the final 10 points of
this assignment, write a function raise_demo in hw10.py that does SOMETHING interesting with
at least one raise statement. It cannot be straight from the lecture, from the lab exercise, or from the
text; it can be an interesting variation from these sources, though.

Perhaps it could use raise in printing a soothing or informative message before passing on an
exception to a higher level; perhaps you could set up a custom-exception of your own, and the
function could raise it when appropriate.

Any attempt will garner you at least 5 points of the possible 10 for this problem.

6. 5 POINT BONUS:

Something is just not right with the following function ---
(see next page)

CIS 480 - Python - Homework #10 p. 6
Fall 2005

def price_check(unit_price, quantity):
assert (quantity >= 0, "cannot have a negative quantity")
assert (unit_price >= 0, "cannot have a negative unit price")

print "You would owe $%.2f for %d of this item." %\
(unit_price * quantity, quantity)

Sure, when you call price_check(3, 4), it prints:

You would owe $12.00 for 4 of this item.

But, when you call price_check(-3, 4), it doesn't fail! It prints:

You would owe $-12.00 for 4 of this item.

For a 5 point bonus --- explain WHY this behavior is occurring, and how it can be fixed. Type
your answer in a triply-quoted string within hw10.py, followed by a corrected version of
price_check.

Sadly, there is no time to come up with proper testing specifications for a hw10_test.py module, so
none is required for this homework. You should, of course, still test all of your functions thoroughly!

By the due date and time given at the beginning of this handout, use ~st10/480submit to submit your
final version of hw10.py (And remember --- you can submit more than one version of these before the
deadline, if inspiration strikes after a submission. As the syllabus notes, I'll simply grade the latest
version that was submitted before the deadline.)

