
CIS 180 L - Intro to Python - Homework Assignment #6 p. 1
Fall 2006

CIS 180 L - Intro to Python - Fall 2006
Homework Assignment #6

Due: TUESDAY, October 24th, beginning of class

Purpose: To practice a bit with docstrings and exception handling in Python

Note: as long as you meet the specifications below, you may add additional embellishments as you wish.

How to turn this in: submit the files help1.txt, help2.txt, pydoc1.txt, and hw7.py using ~st10/180pysubmit on
cs-server.

1. This will be a little different – consider the posted solutions for hw3.py, hw4.py, and hw5.py available from
the course Moodle site. Select one of them (or select a module that you have written that includes at least
two functions within it).

Copy this module to the directory you want to work from for this homework, and add appropriate docstrings
to it – add one at the beginning describing the module overall, and add one as the first line within each
function.

Now, test those docstrings: inside either python or IDLE,
* import your modified module,

* run the help command for your module (help(modname)) -- copy and paste the help-results from the
screen to a file help1.txt. (It should show your new docstrings to nice effect!)

* and, run the help command for a function within your module (help(modname.functname) if you
imported it using import modname, and help(functname) if your imported it using from modname
import *) -- copy and paste the help-results from the screen to a file help2.txt. (And this should
highlight the docstring you used for that function.)

Finally, practice with the pydoc command. This will NOT be in python or IDLE – this would be at a
command line (perhaps in cs-server). In UNIX, you can save the output of a command in a file by
redirecting it --- that means to put a > and then the name of the desired output file.

Try these commands at a UNIX prompt in a directory containing your module:

cs-server> pydoc modname

...and you should see your docstrings within a nice manual page. To write this to a file pydoc1.txt, then:

cs-server> pydoc modname > pydoc1.txt

Submit help1.txt, help2.txt, and pydoc1.txt on cs-server using ~st10/180pysubmit .

2. Now, a small experiment: what happens if you try to open a file that does not exist?

Try it --- try to open a file nonexistent for reading within Python or IDLE. (That is, open('nonexistent', 'r')
). What exception does it throw? Note that exception.

Now, let's use that to write a small function. Create a plain-text file hw7.py. Start it with a docstring
containing at least a brief description of this module, your name, and the last modified date.

Now write a function try_read. It should take a string as its argument, intended to be a file name. It should:

CIS 180 L - Intro to Python - Homework Assignment #6 p. 2
Fall 2006

* try to open its argument for reading. If it can, it should then read and return the first line read.

* if it CANNOT open its argument for reading, however, it should not crash. It should use try and except
to instead return No such file if it cannot open its argument because that file does not exist.

* include a docstring as the first thing within try_read.

Examples:
Assume that file1 is readable and has as its first line Here is the first line. Assume that file2 does not exist.
Then:
hw7.try_read('file1') == "Here is the first line.\n"
hw7.try_read('file2') == "No such file"

3. What exception is thrown if you try to index a string or a list or a tuple with an index outside of that string or
list or tuple? Try it and see... ('name'[27] for example)

Add a function get_many that accepts a string, an index, and a quantity as its three arguments.
* It tries to grab the character at that index in the string, repeat it quantity times, and return the result.

* If that index is NOT in the string, however, return an empty string. (And, yes, I know this can be done
with len in an if-statement! But for THIS homework, use a try and except instead, for exception-
handling practice.)

* include a docstring as the first thing within get_many

Examples:
ruler = 'King Arthur"
hw7.get_many(ruler, 5, 6) == "AAAAAA"
hw7.get_many(ruler, 27, 18) == ""

Now you can also submit hw7.py using ~st10/180pysubmit on cs-server (joining help1.txt, help2.txt, and
pydoc1.txt submitted previously).

