
CIS 180 L - Intro to Python - Homework Assignment #8 p. 1
Fall 2006

CIS 180 L - Intro to Python - Fall 2006
Homework Assignment #8

Due: THURSDAY, October 26th, beginning of class

Purpose: To practice a bit with Python classes

Note: as long as you meet the specifications below, you may add additional embellishments as you wish.

How to turn this in: submit the file hw8.py using ~st10/180pysubmit on cs-server.

1. Create a plain-text file hw8.py. Start it with a docstring containing at least a brief description of this
module, your name, and the last modified date.

Write an if statement that will, if this module is called from the command-line, print out some statement
exclaiming that it is being called from the command line. (It should not print this statement if it is being
imported within python or IDLE.)

2. Now consider lect09_6.py and lect09_7.py. These declare Employee and Chef classes (where Chef is a
subclass of Employee).

Add lines doing the following to your hw8.py:

* import lect09_6 and lect09_7. (It is your choice whether you use import or from for this.)

* create at least one Employee object, and create at least one Chef object

* print to the screen the result of explicitly calling at least one additional method of your Employee
object, and at least one additional method of your Chef object.

(Why do I say "explicitly" and "additional" above? Because you have implicitly called those class's
constructors already, to create your objects.)

* recall that the dir function lists all of an object's attributes. Call dir twice, once for each of your
Employee and Chef objects, to show their attributes (and to see how the Chef object really has inherited
giveRaise from Employee)

(It would be ideal if you can run hw7.py from the command line as well as import it in python/IDLE, so you can
see the difference in the result of your if-statement in problem #1... 8-))

Now you can submit hw8.py using ~st10/180pysubmit on cs-server.

Because the time between Tuesday and Thursday is too short, I won't formally ask you to write another subclass of
Employee, such as a Programmer which should also have a faveLang attribute, an overridden work()
method which prints "<lastname> programs", a method changeLang which changes the faveLang of that
programmer to the new string given as its argument, and an overridden __repr__ giving an appropriate string
for the Programmer instance --- but it *would* be good practice. Especially if you were to then practice
creating a Programmer object, calling its methods, and then seeing what that Programmer object's attributes
are...

