
CIS 315 - Reading Packet: "Writing relational operations using SQL" p. 1
Fall 2010

CIS 315 - Reading Packet: "Writing relational operations using SQL"

SOURCES:
* Oracle9i Programming: A Primer, Rajshekhar Sunderraman, Addison Wesley.
* Classic Oracle example tables empl and dept, adapted somewhat over the years

The basic SQL SELECT statement syntax and semantics
In lecture, we discussed the most important relational operations, from relational algebra. Today,
we're going to discuss how these relational operations, and combinations of these relational operations,
can be expressed in SQL.

In particular, we are going to be discussing Oracle SQL's select statement, which "provides a simple
and powerful way of expressing ad hoc queries against the database." Really, it is the basic query
statement in SQL. One can use it "to extract the specified data from the database and present it to the
user in an easy-to-read format" (or in the form of a table, anyway).

Here's the confusing part: the relational operations are expressed in SQL using the SQL SELECT
statement. What's confusing about that? Well, you should recall that the most important relational
operations are selection, projection, equi-join, and natural-join (and that you have to understand
Cartesian product to understand the equi-join and natural join, even though you rarely want Cartesian
product by itself). You should not assume that the SQL SELECT statement is only for the relational
selection operator! You use it to express selections and projections and equi-joins and natural joins,
and even Cartesian products (although rarely intentionally!).

You need to become very comfortable expressing these relational operations, and combinations of these
operations, using the SQL SELECT statement.

(Note: remember that SQL is NOT case-sensitive; it does not matter if you type SELECT or select
or Select, or even sElEcT (although that would be hard to read!). In SQL, case only matters within
string literals -- 'Hi' is not equal to 'hi'. You'll find that I tend to type SQL in lowercase, although
sometimes I might write some keywords in uppercase for emphasis. I don't mind what case you use, as
long as you are consistent about it within a given script.)

We're going to find out that the SQL SELECT statement has a number of optional clauses. Ignoring
most of those optional clauses for the moment, here is the basic SQL SELECT statement syntax
(where < > and [] are not part of the syntax, but < > is used to describe parts the user chooses, and []
is used to indicate optional parts):

select [distinct] <one or more expressions, separated by commas>
from <one or more expressions representing tables, separated by commas>
[where <search-condition>];

So, a SQL SELECT must always have a select-clause and a from-clause; optionally, it may have a
where-clause (and it frequently does). It may also have additional optional clauses that we will discuss

CIS 315 - Reading Packet: "Writing relational operations using SQL" p. 2
Fall 2010

later. SQL*Plus does not care how many lines this is written across (although blank lines within a
SELECT should be avoided, as discussed in last week's lab!). However, it will be a course style
standard that the select-clause, the from-clause, and the where-clause will start on separate lines.

Here are the semantics of the SQL SELECT statement: conceptually (although the algorithm may be
much more efficient in reality):
1. the Cartesian product of the tables listed in the from-clause is computed;
2. a relational selection of this Cartesian product is computed, selecting those rows for which the

where-clause search condition is true;
3. a relational projection of #2's selection is computed, projecting only the expressions (often

column names) from the select-clause.

A table results from this, although that table is not saved, and it may not always be a true relation,
because, for efficiency reasons, Oracle does not always perform the final step of removing any
duplicate rows in the tabular result. It only removes any duplicate rows from the result if the optional
keyword DISTINCT is included in the select-clause as shown.

Understanding these semantics will help you see how the SQL SELECT statement can be used to
specify desired combinations of relational operations.

Remember the very simple select statement we used last week?

select *
from <tablename>;

Now we can see that this (1) computes the Cartesian product of the tables in the from-clause -- but as
there is just one table in that clause, the result is just the rows of that table. Then, (2) there is no where-
clause, so all of those rows are selected. Finally, (3) * in the select-clause is a shorthand meaning all of
the columns in all of the tables in the from-clause, and so all of the columns in that table are projected
to result in the final table result. Thus we see all of the columns of all of the rows of <tablename> as a
result of this select statement.

Interlude: some example tables, and a few words on foreign keys, other table constraints,
and inserts
Before we continue with today's examples, we need to set up some example tables. Along with this lab
you will find a link to a SQL script set_up_ex_tbls.sql, which sets up and populates three tables, empl,
dept, and customer. You can create a file set_up_ex_tbls.sql on nrs-labs, paste in this posted link's
contents (omitting the "Please send questions to..." line and straight line after that...!), and save your
resulting SQL script file. Alternately, I've placed a copy of this script file at
~st10/315lab04/set_up_ex_tbls.sql, and so you should be able to make your own copy in your current
directory with the UNIX command: (note the space and period at the end, they are important!!)

cp ~st10/315lab04/set_up_ex_tbls.sql .

Once you have the set_up_ex_tbls.sql SQL script, you should execute it within sqlplus to set up and
populate these tables on your Oracle account.

CIS 315 - Reading Packet: "Writing relational operations using SQL" p. 3
Fall 2010

Let's look at this script for a moment, however, as it happens to include some features not discussed in
last week's introduction. You can either look at the posted version, or open the file using pico or emacs
or vi, or you can even look at it on-screen under UNIX by using

more set_up_ex_tbls.sql

Consider the drop table statements -- these now include the clause cascade constraints. This clause
means to drop this table even if it is a "parent" table, a table referenced by foreign keys in other tables.
(A table with such a foreign key is said to be a "child" table of this "parent" table that its foreign key
references.) In Oracle, a table has to already exist before another table can specify a foreign key
referencing that table; thus, "parent" tables must be created before "children" tables are created. But
"parents" cannot be dropped if their "child" tables still exist -- "child" tables have to be dropped first.
Since many programmers like to "pair" their drop-table and create-table statements within a script
setting up a set of tables, cascade constraints make this possible. It should be used with some care, but
if a script is going to completely recreate all of the tables in a collection, it should be safe to use it in
this way.

We are using an additional constraint, NOT NULL, in the column definitions for dept_name and
dept_loc in the dept table. This is asking the DBMS to ensure that rows inserted into dept must
include values for these columns -- these columns should never be allowed to contain the special
NULL value. That is, dept_name and dept_loc should not be permitted to be empty.

We discussed foreign keys in last week's lecture; you see the SQL syntax for specifying a foreign key
in several of these create-table statements:

foreign key (col1, col2, ...) references tbl
or

foreign key (col1, col2, ...) references tbl(diffname1, diffname2, ...)

This is actually another constraint on the table being created: it is saying that the column or columns
specified are foreign keys referencing the specified table. If these columns in the referenced table have
exactly the same names as in this table, you can use the first version above. Otherwise, you must use
the second version.

By the way -- note empl's foreign key mgr. It is indeed a foreign key referencing the empl table itself!

Also note the variation on the insert statement used for inserting rows into the empl table - this is the
version you use if you only want to explicitly fill some of the columns in a new row, or if you want to
specify the column values in an order different than their order in the table's create table statement.
After the table name, you include a parenthesized list of what columns' values are to be specified and in
what order, and after values you include a parenthesized list of exactly the values for those columns, in
that order. What happens to the unspecified columns in the new row? They will either be NULL, or if
the create-table statement specifies a default value for that column, that column will contain that default
value.

So,

CIS 315 - Reading Packet: "Writing relational operations using SQL" p. 4
Fall 2010

insert into empl(empl_num, empl_last_name, job_title, mgr, hiredate,
 salary, dept_num)
values
('7934', 'Miller', 'Clerk', '7782', '23-Jan-1992', 1300.00, '100');

...is saying to insert a new row into empl with these values for empl_num, empl_last_name, job_title,
mgr, hiredate, salary, and dept_num. Since column commission is not in that list, its value will be
NULL for the new row.

Are you curious how you specify a default value for a column? You can see that in customer's
cust_balance column:

 cust_balance number(7, 2) default 0.0,

...you include the constraint default followed by the desired default value.

Using SQL SELECT for the classic relational operations

Relational PROJECTION with a SQL SELECT statement
You can use SQL SELECT as follows to specify a "pure" relational projection:

select distinct <columns-to-project-separated-by-commas>
from <tbl>;

Here are some example "pure" relational projections:

The relational projection of the empl_last_name, salary, and hiredate columns of the empl table:

select distinct empl_last_name, salary, hiredate
from empl;

The relational projection of the job_title column of the empl table:

select distinct job_title
from empl;

Notice that you can project the desired columns in any order that you like, and you will see the values
of these columns for all of the rows in the table. (But, because of the distinct, you will get a true
relation as the result: any duplicate rows in the result will be removed.)

What happens if you omit the distinct? Then you may get ALMOST a "true" relational projection --
any duplicate rows will remain in the resulting table. Depending on what you are asking and why,
sometimes you might want duplicate rows (even if that isn't a true relation), and SQL gives you the
option, then. It is also a bit more efficient, since the DBMS doesn't have to do the work of checking for
duplicate rows before displaying the result. You should use distinct when you know duplicate rows

CIS 315 - Reading Packet: "Writing relational operations using SQL" p. 5
Fall 2010

might occur and you don't want them.

Compare the results of:

select distinct job_title, dept_num
from empl;

select job_title, dept_num
from empl;

Be sure you understand why the results differ.

One more thought: if you are projecting (all of) a table's primary key, is it possible for there to be
duplicate rows in the result? No, because primary keys are not permitted to be the same in any two
rows. So there really isn't any need to use distinct if you are projecting a table's primary key, as the
result is guaranteed to be the "true" relational projection without it.

Relational SELECTION with a SQL SELECT statement
You can use SQL SELECT as follows to specify a relational selection:

select *
from <tbl>
where <condition-specifying-rows-to-select>;

Here are some example relational selections:

The relational selection of the rows of the empl table where job_title = 'Manager':

select *
from empl
where job_title = 'Manager';

SQL actually provides a rich set of ways specifying which rows to select -- for now, note that you can
use =, as above, to specify that you want rows where a particular column's value is equal to the
specified value. You can also use <, <=, >, >=, to indicate that you are interested in rows where a
column's value is compared in these ways to some value, and there are two ways to indicate that you
are interested in rows in which a column is not equal to some value: <> and != .

Quick question: what rows do you think will result from the query:

select *
from empl
where job_title = 'manager';

Try it -- you'll see the no rows result. (The empty table is a relation, too!) This is because the only place
that SQL is case-sensitive is within string literals: so 'Manager' is not equal to 'manager'.

CIS 315 - Reading Packet: "Writing relational operations using SQL" p. 6
Fall 2010

The relational selection of the rows of the empl table in which the hiredate is after June 1, 1991:

select *
from empl
where hiredate > '01-JUN-1991';

Relational EQUI-JOIN with a SQL SELECT statement
You can use SQL SELECT as follows to specify an equi-join:

select *
from <tbl1, tbl2>
where <tbl1.join-col = tbl2.join-col>;

Here is an example equi-join:

The equi-join of the tables empl and dept using the join condition empl.dept_num = dept.dept_num:

select *
from empl, dept
where empl.dept_num = dept.dept_num;

Consider the semantics of the basic SQL select statement -- they are exactly the steps we described for
what an equi-join means: (conceptually) compute the Cartesian product of the two tables in the from-
clause, select only those rows in that Cartesian product satisfying the join condition, and project all of
the columns in the result.

Relational CARTESIAN PRODUCT with a SQL SELECT statement
It is rare that you actually want a Cartesian product of tables, but it is a very common error to ask for
one when you do not intend to. Consider what you get if you leave off the join condition in an
attempted equi-join:

select *
from <tbl1, tbl2>;

...where you really intended:

select *
from <tbl1, tbl2>
where <tbl1.join-col = tbl2.join-col>;

According to the basic SQL select statement semantics, that first statement above determines the
Cartesian product of tbl1 and tbl2 -- and since there is no join condition, all of the rows of the Cartesian
product are selected, and all of its columns projected. Thus, the result is just the Cartesian product of
those two tables -- for a tbl1 with m rows and a tbl2 with n rows, all m*n rows of that Cartesian

CIS 315 - Reading Packet: "Writing relational operations using SQL" p. 7
Fall 2010

product!

If you are looking at an equi-join or natural join result, and realize there are way too many rows in it,
the first thing you should suspect is an inadvertent Cartesian product, and you should check if you have
left out the necessary join condition!

Quick note, before we go on: you know that computers do not handle ambiguity well. That applies to
SQL as well. No two columns within the Cartesian product of the from-clause of a SQL select
statement can have the same name. This isn't a problem, however, because columns in two tables that
otherwise would have the same name are really considered to have the name
<tbl-name>.<column-name>. So, when a from-clause has:

from empl, dept

...dept's dept_num column has the name dept.dept_num, empl's dept_num column has the name
empl.dept_num, and there is no ambiguity.

However, when you are specifying columns in the select-clause or the where-clause, you must give
unambiguous column names as well. So, if a column name appears in more than one table in the from-
clause, you must precede that column name by the table name and a period everywhere else within that
select statement -- as empl.dept_num or dept.dept_num rather than simply as dept_num .

Relational NATURAL JOIN with a SQL SELECT statement
There is no short-cut to easily get a natural join using a SQL select statement -- it is like the equi-join,
but you have to exlicitly project in the select-clause all of the columns except the "duplicate" one you'd
like to omit.

select <every-column-except-the-duplicate-column-you'd-like-to-omit>
from <tbl1, tbl2>
where <tbl1.join-col = tbl2.join-col>;

Here is an example natural join:

The natural join of the tables empl and dept using the join condition empl.dept_num = dept.dept_num:

select empl_num, empl_last_name, job_title, mgr, hiredate,
 salary, commission, empl.dept_num, dept_name, dept_loc
from empl, dept
where empl.dept_num = dept.dept_num;

CIS 315 - Reading Packet: "Writing relational operations using SQL" p. 8
Fall 2010

It of course does not matter whether you choose to project the empl.dept_num column or the
dept.dept_num column, as long as you only project one of them -- the result is still considered the
natural join of these two tables on that join condition.

COMBINATIONS of RELATIONAL OPERATIONS using a SQL SELECT statement
We often perform combinations of relational operations using a SQL select statement; we are not
limited just to the individual relational operations we have just demonstrated. (The point was that you
can use SQL select to specify each "pure" basic relational operation, not that you are limited to those.)
SQL select makes such combinations very reasonable, especially once you are comfortable with its
semantics that we described earlier.

Note that SQL has an AND operation, for logical and, an OR operation, for logical or, and a NOT
operation, for logical not. This can be used to build very sophisticated where-clauses, where you can
select a finely-requested choice of rows from the SQL select's Cartesian product, including selecting
just some of the rows from an equi-join or natural join, if you use AND to select rows that meet the join
condition AND some other condition.

You can decide to project just some of the columns from some selection or some equi-join or some
natural join. So, in practice, you join only the tables you want (if you include an appropriate join
condition...!), select only the rows you want from that join, project only the columns you want from
that selection.

SELECT <desired expressions to project>
FROM <tbl, or tbls to be joined>
[WHERE <join-condition-if-a-join>
 AND <condition to specify desired rows from join>];

...although, oddly enough, it is more common to indent this as:

SELECT <desired expressions to project>
FROM <tbl, or tbls to be joined>
[WHERE <join-condition-if-a-join>
AND <condition to specify desired rows from join>];

I'll accept either of the above indentation styles for SQL select statements.

And the where-clause is not limited to this; it can be any condition, involving as many AND's and OR's
and NOT's associated with conditions as you want.

So, for example, what if you would like to project just the job_title and hiredate of empl rows whose
commission is more than 0? This SQL select statement will do so:

select job_title, hiredate
from empl
where commission > 0;

CIS 315 - Reading Packet: "Writing relational operations using SQL" p. 9
Fall 2010

(Note that this may produce duplicate rows -- there is no distinct in the select-clause to prevent them.)

And what if you'd like to project just the empl_last_name, dept_name, and dept_loc from the selection
of rows from the equi-join of empl and dept on the join condition empl.dept_num = dept.dept_num for
which the hiredate is later than December 1, 1991?

select empl_last_name, dept_name, dept_loc
from empl, dept
where empl.dept_num = dept.dept_num
and hiredate > '01-DEC-1991';

Do you see that I could have described the above as being a further projection of either the equi-join or
the natural join of empl and dept with that join condition? It is projecting just some of the columns
from either one, after all. So, in practice many people just say they are projecting just certain columns
from the join of these tables, in this case.

	SOURCES:
	The basic SQL SELECT statement syntax and semantics
	Interlude: some example tables, and a few words on foreign keys, other table constraints, and inserts
	Using SQL SELECT for the classic relational operations
	Relational PROJECTION with a SQL SELECT statement
	Relational SELECTION with a SQL SELECT statement
	Relational EQUI-JOIN with a SQL SELECT statement
	Relational CARTESIAN PRODUCT with a SQL SELECT statement
	Relational NATURAL JOIN with a SQL SELECT statement

	It of course does not matter whether you choose to project the empl.dept_num column or the dept.dept_num column, as long as you only project one of them -- the result is still considered the natural join of these two tables on that join condition.
	COMBINATIONS of RELATIONAL OPERATIONS using a SQL SELECT statement

