
CIS 315 - Reading Packet: "More where clause options and aggregate functions" p. 1
Fall 2010

CIS 315 - Reading Packet: "More options for the SQL Select WHERE clause,
column aliases, table aliases, computed columns, aggregate functions, and more"

SOURCES:
* Oracle9i Programming: A Primer, Rajshekhar Sunderraman, Addison Wesley.
* Classic Oracle example tables empl and dept, adapted somewhat over the years

The basic SQL SELECT statement, continued

Combining relational operations within a single SQL SELECT statement
Recall the SQL SELECT statement semantics (for simple SQL selects) presented in the previous lab:

1) perform a Cartesian product of the tables listed in the FROM clause;
2) perform a relational selection of the rows from 1) that meet the condition in the WHERE clause;
3) perform a "partial" projection from 2) (which is only guaranteed to be a "pure" projection if

DISTINCT is included!) of the expressions/columns in the SELECT clause

Now that we (last lab) have discussed how the SQL SELECT statement can be used to specify "pure"
relational operations, we should be ready, keeping these SQL SELECT semantics in mind, to combine
relational operations within a single SQL SELECT statement.

For example, we often don't do a "pure" natural join or equi-join -- more often, we simply project the
desired columns from an equi-join. For example, if we only want to know each employee's last name,
department name, and department location, we would only project those three columns from the equi-
join of the empl and dept tables:

select empl_last_name, dept_name, dept_loc
from empl, dept
where empl.dept_num = dept.dept_num;

As another example, it is very common to combine projection and selection -- that is, one might select
specific rows from some table, and then only project particular columns from that selection of rows.
For example, if I am just interested in the last names and salaries of employees who are managers, then
I could combine projection and selection within a single SQL SELECT statement as so:

select empl_last_name, salary
from empl
where job_title = 'Manager';

(Keep in mind: according to our SQL SELECT semantics, we are grabbing all of the rows from the
empl table (since there is only one, there isn't really a Cartesian product), then selecting just those empl
rows for which job_title is equal to 'Manager', and then projecting the empl_last_name and salary from
JUST those rows.)

CIS 315 - Reading Packet: "More where clause options and aggregate functions" p. 2
Fall 2010

And, as another example, if you only want job_titles and hiredates for employees with commissions
greater than 0, you could do that with a combination of selection and projection as well:

select job_title, hiredate
from empl
where commission > 0;

SQL "gotcha" - selecting rows in which a given column is NULL
Here is a SQL "gotcha" that you need to know: if you just want to select rows in which a particular
column is null (or not null), then you have to ask that in a very particular way (and not in the way any
sensible person would think would work!): you need to use is null or is not null.

So, if you would like the last names of employees who have NO commission (a commission column
value of NULL, empty), then you would write:

select empl_last_name
from empl
where commission is null;

Here's the sad part: assume you, quite sensibly, used = instead of is in this query:

select empl_last_name
from empl
where commission = null;

This would not be an error -- however, it would not give the same results, either! (Try it!) You'll find
that this query simply gives the result:

no rows selected

Likewise, if you want to project just the salaries of employees who have non-null commissions, this
would give you the results you want:

select salary
from empl
where commission is not NULL;

...while this would result in no rows:

select salary
from empl
where commission != NULL;

The moral of this particular story is to try to remember to use is instead of = whenever you want to
select rows based on a column being or not being NULL.

More examples of combining relational operations within a single SQL SELECT statement
If you want to have further selection of rows from an equi-join, you will typically indicate this within a
SQL SELECT statement by using logical AND's within the WHERE clause. (That is, you will only
select rows for which the join-condition is true AND additional criteria are met.)

CIS 315 - Reading Packet: "More where clause options and aggregate functions" p. 3
Fall 2010

So, if you would like employee last names, the name of their departments, and their department
locations only for employees hired since 12-1-1991, then you can do this with a combination selection,
equi-join, and projection as follows:

select empl_last_name, dept_name, dept_loc
from empl, dept
where empl.dept_num = dept.dept_num
 and hiredate > '01-dec-1991';

Here, we are selecting those rows from the Cartesian product of empl and dept for which
empl.dept_num = dept.dept_num and hiredate > '01-dec-1991'.

Such combinations of relational operations are very common -- they are extremely useful and versatile.

When table names are REQUIRED before a column name
Consider the preceding example -- what if I decided that I'd like to project the department number, also,
right before the department name, for each employee hired after December 1, 1991? You might try this:

-- this WON'T WORK:

select empl_last_name, dept_num, dept_name, dept_loc
from empl, dept
where empl.dept_num = dept.dept_num
 and hiredate > '01-dec-1991';

...but you would find that the above does not work, and indeed gives an error that includes the phrase
"column ambiguously defined":

ERROR at line 1:
ORA-00918: column ambiguously defined

What could be ambiguous here? Consider again what a Cartesian product does: it includes all pairings
of all columns from both tables. So, the Cartesian product of empl and dept has two columns with the
name dept_num. To indicate which table's dept_num is intended, you precede it by the specific table
name, followed by a dot -- and, indeed, this is what we have been doing in our join conditions:

empl.dept_num = dept.dept_num

It just happens that you need to use this table_name.col_name notation anywhere within the SQL
SELECT that you use a column name that appears in more than one table in the FROM clause (even in
the SELECT clause!).

So, since dept_num appears in both empl and dept, we can project dept_num by using either:

-- ... this DOES work:

CIS 315 - Reading Packet: "More where clause options and aggregate functions" p. 4
Fall 2010

select empl_last_name, dept.dept_num, dept_name, dept_loc
from empl, dept
where empl.dept_num = dept.dept_num
and hiredate > '01-dec-1991';

-- as does:

select empl_last_name, empl.dept_num, dept_name, dept_loc
from empl, dept
where empl.dept_num = dept.dept_num
and hiredate > '01-dec-1991';

(Do you see that, since you are only selecting rows for which empl.dept_num =
dept.dept_num, both of these must give the same results?)

More possibilities for the WHERE clause - AND, OR, NOT, !=, <>
Before we go on, let's expand the possibilities for specifying which rows we would like to select, since
Oracle SQL provides a nicely-rich set of options for this.

We've already mentioned that SQL provides the boolean AND operation, that is true only if both
operands are true. So, note that SQL also provides the boolean OR operation, that is true is EITHER
operand is true, as well as the boolean NOT operation, true if its operand is false.

For example, what if you would like to see the last names of employees who are EITHER sales people
OR have a salary of $1500 or more? Then you could use OR for this:

select empl_last_name
from empl
where job_title = 'Salesman'
 or salary >= 1500;

Be careful when you combine AND and OR within the same SQL SELECT statement -- to make it
perfectly clear what is being AND'ed and what is being OR'ed, you should use parentheses to make that
explicitly clear. For example, if I want the names and hiredates of only employees hired after March 1,
1991, who are also either sales people or make $1500 or more, then this would accomplish this (and be
clear to the reader):

select empl_last_name, hiredate
from empl
where hiredate > '01-Mar-1991'
 and (job_title = 'Salesman'
 or salary >= 1500);

As an example of the logical NOT operator, consider one of the several ways you can select those
employee rows for employees who are not sales people:

select *

CIS 315 - Reading Packet: "More where clause options and aggregate functions" p. 5
Fall 2010

from empl
where not job_title = 'Salesman';

Interestingly, though, SQL has two different "not equal" operators, both <> and != :

select *
from empl
where job_title <> 'Salesman';

select *
from empl
where job_title != 'Salesman';

The BETWEEN operator
Oracle SQL also includes a BETWEEN operator. The expression:

 attrib BETWEEN val1 AND val2

...is true if the value of attrib is greater than or equal to val1 and less than or equal to val2 --
that is, it is true if the value of attrib is, well, between val1 and val2, inclusive. Or, it has the
same value as the expression:

 (attrib >= val1) AND (attrib <= val2)

So, one could write a SQL SELECT to select the rows of empl for employees whose salary is between
$1100 and $1600, inclusive, using:

select *
from empl
where salary between 1100 and 1600;

When you try out this query in sqlplus, take note of how the result includes a row with salary 1100 and
a row with salary 1600 (emphasis below added by the instructor):

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
7499 Michaels Salesman 7698 20-FEB-91 1600 300 300
7521 Ward Salesman 7698 22-FEB-91 1250 500 300
7654 Martin Salesman 7698 28-SEP-91 1250 1400 300
7844 Turner Salesman 7698 08-SEP-91 1500 0 300
7876 Adams Clerk 7788 23-SEP-91 1100 400
7934 Miller Clerk 7782 23-JAN-92 1300 100

6 rows selected.

The LIKE operator
Oracle SQL also includes an operator that can be used for selecting rows whose attributes match some
pattern: the like operator. You use the like operator with the attribute of interest and a string pattern,
which contains what you are trying to match, which may also include the wildcard characters % or _,

CIS 315 - Reading Packet: "More where clause options and aggregate functions" p. 6
Fall 2010

where % matches any 0 or more characters, and _ matches any single character.

Examples will likely make this clearer: what if you would like to select the empl rows for employees
whose employee number ends with a 9? Then this query would select these rows:

select *
from empl
where empl_num like '%9';

Used with like and written as a string, the % here matches any number of characters that an empl_num
begins with, but the 9 at the end means that the empl_num must end with a 9 to be selected. So, the
following rows are selected:

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
7839 King President 17-NOV-91 5000 500
7369 Smith Clerk 7902 17-DEC-90 800 200
7499 Michaels Salesman 7698 20-FEB-91 1600 300 300

It takes some practice to get the hang of writing patterns for what you want to match -- for example,
what pattern would match an employee number with a 7 anywhere in it (beginning, middle, or end)?
Can you see that the pattern '%7%' would work for that?

* an employee number that starts with a 7 matches: 0 characters before the 7 match the first %, then
the 7 matches, then the 3 characters after the 7 match the second %;

* an employee number that ends with a 7 matches: 3 characters before the 7 match the first %, then
the 7 matches, then 0 characters after the 7 match the second %;

* an employee number with a 7 (or even two 7's) in the middle matches: 1 or 2 characters before a 7
match the first %, then the 7 matches, then 1 or 2 characters after a 7 match the second % (even if
that includes another 7).

select *
from empl
where empl_num like '%7%';

As another example, what if you would like to select empl rows for employees who are managers, but
you cannot remember if the job_title column begins with an 'm' or an 'M'? Then a query such as this
would select any row with a job title of 'Manager' or 'manager' (OK, and also 'banager' or '7anager' and
any other character followed by 'anager' -- but not 'Omanager', 'Super-Duper-Manager', etc.)

select *
from empl
where job_title like '_anager';

If you would like to see more examples using like, see the posted 315lab05.sql script that accompanies
this handout.

CIS 315 - Reading Packet: "More where clause options and aggregate functions" p. 7
Fall 2010

Computed columns and Column aliases
It turns out that you can project some things besides just column names in a SQL SELECT statement's
SELECT clause. For example, SQL supports such operations as + (addition), - (subtraction), *
(multiplication), and / (division) -- and when you use such operators with column names in expressions
in the SELECT clause, then that computation is projected.

As a rather silly first example, you could decide to project employee last names and two times their
current salary:

select empl_last_name, salary * 2
from empl;

This will result in the following:

EMPL_LAST_NAME SALARY*2
--------------- ----------
King 10000
Jones 5950
Blake 5700
Raimi 4900
Ford 6000
Smith 1600
Michaels 3200
Ward 2500
Martin 2500
Scott 6000
Turner 3000

EMPL_LAST_NAME SALARY*2
--------------- ----------
Adams 2200
James 1900
Miller 2600

14 rows selected.

It is very important that you realize that using a SQL SELECT statement -- that querying a table -- does
NOT change the tables in your database in ANY way -- and so, choosing to project a computation like
this doesn't change the salaries of employees in the empl table!

If you look at the query result above, you might notice that the computed column's default column
heading is, well, the computation! We'll have more sophisticated ways to change the default column
headings from queries later in the semester, but in the meantime you can change the column heading in
a single query's projected result by renaming that column using a column alias in that SQL SELECT
statement.

CIS 315 - Reading Packet: "More where clause options and aggregate functions" p. 8
Fall 2010

The syntax for this is simple -- in the SELECT clause, you put a blank after the expression to be
projected, and then put the desired column alias (before the comma, if any, "ending" this projection). If
you don't surround the column alias with double quotes, then it will appear in all-uppercase no matter
how you type it, and it mustn't contain blanks; if you do surround the column alias with double quotes,
then it will appear in exactly the case you type it with, and it can contain blanks.

For example,

select empl_last_name last_name, salary * 2 "double salary"
from empl;

gives the result:

LAST_NAME double salary
--------------- -------------
King 10000
Jones 5950
Blake 5700
Raimi 4900
Ford 6000
Smith 1600
Michaels 3200
Ward 2500
Martin 2500
Scott 6000
Turner 3000

LAST_NAME double salary
--------------- -------------
Adams 2200
James 1900
Miller 2600

14 rows selected.

Do you see how using the column alias last_name, without double quotes, appeared as LAST_NAME
in the result, but using double quotes around the column alias "double salary" allowed it to contain a
blank and appear in all-lowercase as given in the query?

Also be sure to note: a column alias ONLY applies to the results from the single query it appears in; it,
too, cannot change the actual database or the tables in it. It only affects the displayed results of that one
query.

One more caveat, in dealing with computed columns: it turns out that computations are ONLY done
when all of the columns involved in the computation have NON-NULL values. This can sometimes
look very strange in query results -- consider the result you get if you project the employee last names

CIS 315 - Reading Packet: "More where clause options and aggregate functions" p. 9
Fall 2010

and the sum of the salary and commission columns as so:

select empl_last_name, salary + commission "combined gross"
from empl;

You might be quite surprised at the result:

EMPL_LAST_NAME combined gross
--------------- --------------
King
Jones
Blake
Raimi
Ford
Smith
Michaels 1900
Ward 1750
Martin 2650
Scott
Turner 1500

EMPL_LAST_NAME combined gross
--------------- --------------
Adams
James
Miller

14 rows selected.

Because only sales people have non-null commissions, they are the only employees for whom the
computation salary + commission will project with a non-null result!

Table Aliases
We have mentioned column aliases -- there is another alias that turns out to be handy within a SQL
SELECT statement: table aliases. A table alias is when, in the FROM clause, you give a nickname
(usually shorter...) to one or more of the tables in that FROM clause.

You do this by following the table name in the FROM clause with a blank, and then the desired table
alias (before the comma, if any, preceding a next table name). Once you do this, you are expected to
use this alias INSTEAD of the table name THROUGHOUT that query -- in the SELECT clause, in the
WHERE clause, and in all other SELECT statement clauses that we will be adding as the semester
progresses.

Why would you do this? Usually, to save typing in join-conditions, although sometimes also to permit
certain advanced queries (such as joining a table with itself!).

CIS 315 - Reading Packet: "More where clause options and aggregate functions" p. 10
Fall 2010

Here's an example, projecting the department number and employee last name for all employees:

select d.dept_num, empl_last_name
from dept d, empl e
where d.dept_num = e.dept_num;

Here, in the FROM clause, d is being set up as a table alias for table dept, and e is being set up as a
table alias for table empl. And so, in the SELECT clause and the join-condition, one can now say
d.dept_num instead of dept.dept_num, and e.dept_num instead of empl.dept_num. Indeed, once
you set up a table alias in the FROM clause, you don't get a choice about whether to use it or not
elsewhere in that one query -- you'll get an error if you don't!!) For example, the query below will
result in an Oracle error message (emphasis was added by instructor for emphasis):

-- SQL*Plus WON'T like this:

select dept.dept_num, empl_last_name
from dept d, empl e
where d.dept_num = e.dept_num;

-- but this is fine:

select d.dept_num, empl_last_name
from dept d, empl e
where d.dept_num = e.dept_num;

Again, like for column aliases, table aliases ONLY apply for the ONE query they appear in -- they don't
affect any other SELECT statement.

And, a style note: as you can see, table aliases are often quite short. However, you are expected to
choose them based on the names of the tables they are aliases for -- for example, it is clear, in a query
involving tables named dept and empl, that d should stand for dept and that e should stand for empl. It
would not be nearly so clear if you used aliases such as x and y for dept and empl...! So, you are
expected to avoid choosing confusing table aliases.

There are a few more examples of queries involving table aliases in lab05.sql, including an example
where the table alias is required for the query to work, if you are interested.

Joins involving more than two tables
Note that, although we have been doing equi-joins and natural joins involving pairs of tables so far, you
can have equi-joins and natural joins involving as many tables as you would like (as long as they are
related to each other appropriately...!) You just have to include all of the involved tables in the SQL
SELECT statement's FROM clause, and include enough join-conditions to keep your result from being
a partial Cartesian product!

How many join-conditions do you need? The general rule-of-thumb to remember is that, in an equi-join
or natural join of X tables, you had better have at least (X-1) join-conditions (sometimes more,

CIS 315 - Reading Packet: "More where clause options and aggregate functions" p. 11
Fall 2010

depending on how the tables are related to each other, but ALWAYS at least (X-1)). If you have fewer,
then you will not have a join, but a partial Cartesian product (and usually MORE rows than you want,
some of which don't really make much sense...)

So, for example, to join 3 tables, you will need at least (and usually just) 2 join conditions.

As an example, what if I would like to project, for each customer, the customer's last name, the name of
that customer's employee rep, and the department location of that employee? Then I need to have the
customer and the empl and the dept tables involved, and so I need at least two join conditions. How
can I determine what those should be? Look at how the tables are related (usually, look at the foreign
keys):

* since empl_rep in customer is a foreign key referencing empl's empl_num, then one join
condition, relating the customer and empl tables, can be:

customer.empl_rep = empl.empl_num

* and since empl's dept_num is a foreign key referencing dept, then another join-condition, relating
the empl and dept tables, can be:

 empl.dept_num = dept.dept_num

Since we've related customer to empl, and empl to dept, that should be sufficient for equi-joining these
three tables:

select *
from customer, empl, dept
where customer.empl_rep = empl.empl_num
 and empl.dept_num = dept.dept_num;

Of course, if you are only interested in the customer's last name, the name of that customer's employee
rep, and the department location of that employee, as we originally mentioned, then we could choose to
just project those columns from the equi-join of those three tables:

select cust_lname, empl_last_name, dept_loc
from customer, empl, dept
where customer.empl_rep = empl.empl_num
 and empl.dept_num = dept.dept_num;

And, of course, one might choose to further restrict the rows selected -- what if, for example, I want to
project the above only for customers represented by employee Michaels?

select cust_lname, empl_last_name, dept_loc
from customer, empl, dept
where customer.empl_rep = empl.empl_num
 and empl.dept_num = dept.dept_num

CIS 315 - Reading Packet: "More where clause options and aggregate functions" p. 12
Fall 2010

 and empl_last_name = 'Michaels';

The IN predicate
This is yet-another-Oracle SQL possibility for the SELECT statement WHERE clause. A predicate is
an operator whose result is true or false -- so, the IN predicate is an operator that is true if the given
attribute has a value that is one of those in the list of values on the right-hand-side of the IN predicate,
and is false otherwise. The IN predicate is very useful, for example, if you would like to select rows in
which some attribute is one of a small set of values. (It is also very useful in some other situations that
we'll be discussing later in the semester!) You put an attribute, then the predicate IN, then a comma-
separated list of values within a set of parentheses.

Say that you want to project the last names and job_titles and salaries of those employees who are
either managers or analysts -- you know that you can use OR for that:

select empl_last_name, job_title, salary
from empl
where job_title = 'Analyst'
 or job_title = 'Manager';

...but you could also use the IN predicate for that:

select empl_last_name, job_title, salary
from empl
where job_title IN ('Analyst', 'Manager');

Isn't it easy to tell, in the above query, that you want to select those rows in which job_title is either
'Analyst' or 'Manager'? that you want to select those rows for which the row's job_title is IN that set
('Analyst', 'Manager')?

NOT IN is also permitted, and it means what you probably expect: it selects those rows for which the
attribute's value is NOT IN the given list. So, to project the last name and job_title for anyone who
ISN'T an analyst or a manager, you could use:

select empl_last_name, job_title
from empl
where job_title NOT IN ('Analyst', 'Manager');

Aggregate functions
The last topic we'll discuss in this lab are aggregate functions. These are odd, but useful!

Computed columns perform a computation for EACH selected row; aggregate functions are functions
that perform a SINGLE computation on ALL of the selected rows, returning the single result.
(Aggregate functions alway return a single result in *simple* select statements; we'll talk later about
more-advanced select statements in which an aggregate function can result in multiple results.)

Oracle SQL supports at least the following aggregate functions:

CIS 315 - Reading Packet: "More where clause options and aggregate functions" p. 13
Fall 2010

avg(expr) - computes the average of expr in all selected rows
min(expr) - computes the minimum value of expr in all selected rows
max(expr) - computes the maximum value of expr in all selected rows
sum(expr) - computes the sum of expr for all selected rows
count(expr) - computes the number of rows for which expr is non-null over all selected rows

For example, if you would like to project the average employee salary, the average commission, the
minimum salary, the maximum salary, the sum of all salaries, a count of how many managers there are,
the minimum hiredate, and a count of how many employees have non-null commissions, you can get
all of that with the query:

select avg(salary), avg(commission), min(salary), max(salary),
 sum(salary), count(salary), count(mgr), min(hiredate),
 count(commission)
from empl;

...resulting in the (admittedly badly-wrapped) result:

AVG(SALARY) AVG(COMMISSION) MIN(SALARY) MAX(SALARY) SUM(SALARY) COUNT(SALARY)
----------- --------------- ----------- ----------- ----------- -------------
COUNT(MGR) MIN(HIRED COUNT(COMMISSION)
---------- --------- -----------------
 2073.21429 550 800 5000 29025 14

 13 17-DEC-90 4

You could certainly do fewer of these at a time...! Here's a query focusing on commissions, to
emphasize the point that the aggregate functions only operate on NON-NULL values:

select avg(commission) "Avg Comm", min(commission) "Min Comm",
 max(commission) "Max Comm",
 sum(commission) "Comm Sum", count(commission) "How many have
comm"
from empl;

...which results in:

 Avg Comm Min Comm Max Comm Comm Sum How many have comm
---------- ---------- ---------- ---------- ------------------
 550 0 1400 2200 4

You can use * with the count aggregate function to simply count how many rows are selected by this
query -- consider the following query's results:

select count(salary), count(commission), count(mgr), count(*)
from empl;

...which results in:

CIS 315 - Reading Packet: "More where clause options and aggregate functions" p. 14
Fall 2010

COUNT(SALARY) COUNT(COMMISSION) COUNT(MGR) COUNT(*)
------------- ----------------- ---------- ----------

 14 4 13 14

count with a column name gives how many of the selected rows have non-null values for that column;
count with * gives how many selected rows there are, period.

To make sure that it is clear that these aggregate functions return these computations just for the
selected rows, here is an example that projects just the number of clerks and those clerks' average
salary:

select count(*), avg(salary)
from empl
where job_title = 'Clerk';

...which results in:

 COUNT(*) AVG(SALARY)
---------- -----------

 4 1037.5

These additional simple SQL SELECT statement features give you a great number of possibilities for
querying the data in a database -- and these are only the beginning of the power available in this
statement, as we shall see in coming weeks.

	SOURCES:
	The basic SQL SELECT statement, continued
	Combining relational operations within a single SQL SELECT statement
	SQL "gotcha" - selecting rows in which a given column is NULL
	More examples of combining relational operations within a single SQL SELECT statement
	When table names are REQUIRED before a column name
	More possibilities for the WHERE clause - AND, OR, NOT, !=, <>
	The BETWEEN operator
	The LIKE operator
	Computed columns and Column aliases
	Table Aliases
	Joins involving more than two tables
	The IN predicate
	Aggregate functions

