
CIS 315 - Reading Packet: "Views, and Simple Reports - Part 1" p. 1
Sharon Tuttle - Fall 2010

CIS 315 - Reading Packet: "Views, and Simple Reports -
Part 1"

Sources:
* Oracle9i Programming: A Primer, Rajshekhar Sunderraman, Addison Wesley.
* Classic Oracle example tables empl and dept, adapted somewhat over the years

Introduction to SQL views
We've seen at least two "things" that can be created and stored within an Oracle database -- tables and
sequences. Now we are introducing a third "thing" that can be created and stored within an Oracle
database: a view.

A view is a "derived" table -- unlike a regular table, which contains zero or more rows of data, a view
just contains how to generate the desired information whenever the view is used. It can give someone a
specific "picture", or view, of certain data, without concerns about update hassles and perhaps allowing
greater data security (as we will discuss).

A view is created based on a query, and then once it is created, it can be used as if it were an "actual"
table in select statements (and it can *sometimes*, but not always, also be used within carefully-
considered inserts, deletes, and updates as well, although views are most useful within select
statements). But, "under the hood", the DBMS uses the view's underlying query to re-create the view
every time a SQL statement uses the view.

You create a view using a create view statement, and you remove/delete a view using a drop view
statement. The drop view statement has the syntax you would likely expect:

drop view view_to_remove;

The basic form of the create view statement has the following syntax:

create view view_name as
select_statement ;

The view created then has the name view_name, has whatever columns are projected by the
select_statement, and has the contents selected by the select_statement.

Since we'll be mucking with the example tables for this lab, I'll start with a "fresh" copy of the empl
and dept tables (this assumes that I've made a copy of set_up_ex_tbls.sql ins whatever directory I
started up sqlplus from, of course):

start set_up_ex_tbls.sql

Now, for example, the following drops and creates a view named short_empl that has just four

CIS 315 - Reading Packet: "Views, and Simple Reports - Part 1" p. 2
Sharon Tuttle - Fall 2010

columns: employee number, employee last name, employee job_title, and the employee number of that
employee's manager:

drop view short_empl;

create view short_empl as
select empl_num, empl_last_name, job_title, mgr
from empl;

Once this view has been created, you can query it as if it were a "real" table -- the only difference is,
that view is "re-created" using its underlying query every time it is used. So, if I do:

select *
from short_empl;

I'll get the results:

EMPL EMPL_LAST_NAME JOB_TITLE MGR
---- --------------- ---------- ----
7839 King President
7566 Jones Manager 7839
7698 Blake Manager 7839
7782 Raimi Manager 7839
7902 Ford Analyst 7566
7369 Smith Clerk 7902
7499 Michaels Salesman 7698
7521 Ward Salesman 7698
7654 Martin Salesman 7698
7788 Scott Analyst 7566
7844 Turner Salesman 7698

EMPL EMPL_LAST_NAME JOB_TITLE MGR
---- --------------- ---------- ----
7876 Adams Clerk 7788
7900 James Clerk 7698
7934 Miller Clerk 7782

14 rows selected.

But if I delete rows from empl:

delete from empl
where job_title = 'Clerk';

...and then rerun:

select *
from short_empl;

...now I will see different contents in this view:

EMPL EMPL_LAST_NAME JOB_TITLE MGR
---- --------------- ---------- ----

CIS 315 - Reading Packet: "Views, and Simple Reports - Part 1" p. 3
Sharon Tuttle - Fall 2010

7839 King President
7566 Jones Manager 7839
7698 Blake Manager 7839
7782 Raimi Manager 7839
7902 Ford Analyst 7566
7499 Michaels Salesman 7698
7521 Ward Salesman 7698
7654 Martin Salesman 7698
7788 Scott Analyst 7566
7844 Turner Salesman 7698

10 rows selected.

If short_empl were an "actual" table, duplicating the contents of empl, I'd have a real data integrity
headache, since I'd need to remember to change short_empl every time that empl was changed. But
since it is a view, re-created whenever it is used based on empl, I don't have that worry -- every time I
use short_empl, it will have the "right" contents, based on the current contents of empl.

Now, we said that a view can be used as if it were a real table -- that's not just in simple queries like
that above. That's in any queries -- involving natural joins, group-by's, nested selects, whatever you
wish. Here's just one example:

select empl_last_name, cust_lname
from short_empl, customer
where short_empl.empl_num = customer.empl_rep;

...resulting in:

EMPL_LAST_NAME CUST_LNAME
--------------- --------------------
Michaels Firstly
Martin Secondly
Michaels Thirdly

You can even use a view in creating another view...!

drop view cust_rep_display;

create view cust_rep_display as
select empl_last_name, cust_lname
from short_empl se, customer c
where se.empl_num = c.empl_rep;

select *
from cust_rep_display;

Views and Database Security
There are a number of reasons for creating views -- you might create a view simply as a convenience,
to make a frequently-done query more convenient. You might create one to make other queries easier.
Another important reason for views is that you might create a view to improve data security.

CIS 315 - Reading Packet: "Views, and Simple Reports - Part 1" p. 4
Sharon Tuttle - Fall 2010

How might a view help data security? Remember the SQL grant and revoke commands? For
example:
grant select
on painter
to abc999, cde888, fgh777;

revoke select
on painter
from abc99, cde88, fgh77;

So, if a DBMS supports these commands, then one can explicitly indicate what access (select, insert,
update, and/or delete) a user has to a database object. But notice this access is granted or revoked on an
object-by-object basis -- you either have, say, select access to a particular object, or you don't. You can't
grant select access to a user to just some columns in a table.

What if, then, a user needs to be able to have access to just some columns in a table? Someone working
in a Payroll department might need access to just some of employee data, but not, perhaps, to employee
home phone numbers. One solution is to create a view containing just the data that user needs, and then
grant select access to that user for just that view, but not for the underlying table.

The payroll employee can then be granted select access for a view with just the employee data needed
to create and process paychecks; a public kiosk in a bookstore could have select access granted for, and
thus be able to display to the public, the columns of a view of bookstore inventory that doesn't include
the price the bookstore paid for each title in stock. One can design the database based on its model, and
then create views as needed to show different users just the "view" of the data that they need to know.
This careful use of views and grant can help enhance database security, while at the same time, since
these views are dynamically "created" whenever used, not leading to the data integrity headaches of
needing to be kept up-to-date.

More view details
I mentioned that the view syntax given earlier was the "basic" form. It turns out that your view does not
have to use the column names from the "original" table(s) -- there are at least two ways to specify the
column names you would like for a new view. Indeed, we will see that sometimes you are required to
specify a different name for a view's column.

One way to specify the column names you would like for a view is to give the desired names in a
comma-separated list after the view name:

create view view_name(view_col1, view_col2, ...) as
select_statement;

Note that, using this syntax, you need to provide a column name for each column projected by the
given select_statement.

The view short_empl2 demonstrates this syntax:

drop view short_empl2;

CIS 315 - Reading Packet: "Views, and Simple Reports - Part 1" p. 5
Sharon Tuttle - Fall 2010

create view short_empl2(name, "job category", manager) as
select empl_last_name, job_title, mgr
from empl;

Now see what column names you see when you query this view:

select *
from short_empl2;

...with the results (recall that we deleted the 4 Clerks earlier in this lab):

NAME job catego MANA
--------------- ---------- ----
King President
Jones Manager 7839
Blake Manager 7839
Raimi Manager 7839
Ford Analyst 7566
Michaels Salesman 7698
Ward Salesman 7698
Martin Salesman 7698
Scott Analyst 7566
Turner Salesman 7698

10 rows selected.

Or, consider the SQL*Plus command:

describe short_empl2

...which has the results:

 Name Null? Type
 --- -------- ----------------------------
 NAME NOT NULL VARCHAR2(15)
 job category VARCHAR2(10)
 MANAGER CHAR(4)

Now, it is important to realize that whatever names you give the columns of a view, you must use those
column names in queries involving that view -- as far as Oracle is concerned, those are the *only*
names it knows for those columns.

Thus, this FAILS:

select empl_last_name
from short_empl2;

...with the error message:

ERROR at line 1:
ORA-00904: "EMPL_LAST_NAME": invalid identifier

CIS 315 - Reading Packet: "Views, and Simple Reports - Part 1" p. 6
Sharon Tuttle - Fall 2010

To Oracle, short_empl2 only has the columns name, "job category", and manager.

(I included the quoted column name as an example for short_empl2, but note that I think you should
avoid such quoted column names for views -- they are annoying to deal with in queries, as they must
always be quoted. For example, if I just want to project short_empl2's second column, in reverse
alphabetical order of that column, I must use:

select "job category"
from short_empl2
order by "job category" desc;

...which results in:

job catego

Salesman
Salesman
Salesman
Salesman
President
Manager
Manager
Manager
Analyst
Analyst

10 rows selected.

I think a one-shot column alias, or another SQL*Plus command we'll be discussing shortly, are better
means for getting column names with blanks when you want them.)

I said that there were at least two ways to set the column names for a view, however. What's the other
way? The other way is to simply use column aliases in the select statement used to define the view:

drop view short_empl3;

create view short_empl3 as
select empl_last_name last_name, job_title position
from empl;

select position, last_name
from short_empl3
order by last_name;

And, you'll see that the above query of view short_empl3 results in:

POSITION LAST_NAME
---------- ---------------
Manager Blake
Analyst Ford
Manager Jones

CIS 315 - Reading Packet: "Views, and Simple Reports - Part 1" p. 7
Sharon Tuttle - Fall 2010

President King
Salesman Martin
Salesman Michaels
Manager Raimi
Analyst Scott
Salesman Turner
Salesman Ward

10 rows selected.

Which is better? It depends on the situation. I think it is easier for the reader to tell what the view's
column names are with the version where they are given after the view name. But if you are only re-
naming a few of the columns from the original table, using table aliases will require less typing.

I mentioned that sometimes you *have* to rename the columns. That situation is when one of the
view's columns is the result of a computation or function -- since such an expression is not a "legal"
column names for a table, including for a view, you must, using one of these two methods, give a
proper name to such a column for your view.

For example, say that you would like a view that gives the average salary per job category -- let's call
this view salary_avgs.

The following WILL NOT WORK: it will complain that you need a column alias for avg(salary):

drop view salary_avgs;

create view salary_avgs as
select job_title, avg(salary)
from empl
group by job_title;

...which will fail with the message:

ERROR at line 2:
ORA-00998: must name this expression with a column alias

The following WILL work, though:

create view salary_avgs(job, salary_avg) as
select job_title, avg(salary)
from empl
group by job_title;

-- (this would work, too...:
--
--create view salary_avgs as
--select job_title, avg(salary) salary_avg
--from empl
--group by job_title;

select *
from salary_avgs;

CIS 315 - Reading Packet: "Views, and Simple Reports - Part 1" p. 8
Sharon Tuttle - Fall 2010

...where this query of this view now results in:

JOB SALARY_AVG
---------- ----------
Analyst 3000
Manager 2758.33333
President 5000
Salesman 1400

Beginning of Introduction to enhancing simple ASCII reports
with the help of SQL*Plus commands

You've seen how query results are displayed by default in SQL*Plus; they are usually OK, but
sometimes you'd like something that looks "nicer". "Nicer" here might mean numbers formatted to the
same number of decimal places, or with a nice title, or with a complete column heading, or even
without ugly line-wrapping.

So, in this section we'll talk about SQL*Plus commands you can use to change how a query's results
are *displayed*, so that they are more suitable for use as a *report* (a presentation of data that is well-
formatted, attractive, and self-explanatory on its own to a reader).

One very short first command: if you simply type /,

/

...in SQL*Plus, that will cause the previous *SQL* command to be re-run. (Not the previous SQL*Plus
command, mind you -- the previous SQL command.) This can be handy when you are tweaking your
query formatting for a report.

For example, the last SQL command I performed was querying the salary_avgs view. If I now type just

/

...I'll again see the results of that query:

JOB SALARY_AVG
---------- ----------
Analyst 3000
Manager 2758.33333
President 5000
Salesman 1400

clear command
We'll be discussing setting up break, column, and compute commands. A report script should first make
sure that some *previous* values for these are not about to mess up our results. So, it is good form to
clear any previous values for these at the beginning of a report script:

CIS 315 - Reading Packet: "Views, and Simple Reports - Part 1" p. 9
Sharon Tuttle - Fall 2010

clear breaks
clear columns
clear computes

-- compliments of S. Griffin: yes, this works, too!!!

clear breaks columns computes

feedback
You know that little line that follws some query results, indicating how many rows were selected? It
has a name -- it is called feedback.

It turns out that SQL*Plus includes commands that let you tweak this feedback, changing when it
appears or even turning it off altogether.

First, if you just want to know the current value for feedback, this SQL*Plus command will tell you:

show feedback

And, here is how to set the feedback to a different number:

set feedback 3

The following, then, would let you see the effects of this:

show feedback

-- this'll note that 3 rows were selected.

select *
from painter;

-- this will not note that one row was:

select *
from painter
where ptr_lname = 'Monet';

And sometimes, for a formal report, you just want to turn feedback off:

set feedback off

pagesize
pagesize is the number of lines in a "page" (the quantum that Oracle will display before re-displaying
column headings, etc.)

You can see the current value of pagesize with:

show pagesize

CIS 315 - Reading Packet: "Views, and Simple Reports - Part 1" p. 10
Sharon Tuttle - Fall 2010

...and you can set the pagesize to a desired value as so (here, I am setting it to 30 lines):

set pagesize 30

One nice trick to know: if you are essentially trying to write queries to generate a flat file of data for
another program, you might set the pagesize to 0 to mean that you NEVER want page breaks.

set pagesize 0

linesize
linesize is used to indicate how many characters are in a line (before line-wrapping will occur).

You can see its current value with:

show linesize

...and you can reset it with something like this (here, I am setting it to 50 characters):

set linesize 50

newpage
If you have been looking closely, you may have noticed that each query has a blank line before its
column headings. It so happens that there is a name for the number of blank lines that appear before the
column headings or top title (if there is one) for each page: this is called newpage.

(It also appears that each SQL select statement's result starts on a new "page", pagesize- and and
newpage-wise.)

To see the current value of newpage:

show newpage

Here's an example of setting it (here, I am setting it to 5 lines):

set newpage 5

Now I can also admit that, oddly enough, the number of lines in a page, in practice, is actually
pagesize + newpage

...odd but true!

And, again, when your goal is to create a flat file of data, setting newpage to 0 is a very good idea.

	Sources:
	Introduction to SQL views
	Views and Database Security
	More view details

	Beginning of Introduction to enhancing simple ASCII reports with the help of SQL*Plus commands
	clear command
	feedback
	pagesize
	linesize
	newpage

