
CIS 315 - Reading Packet: "Simple Reports - Part 2" p. 1
Sharon Tuttle - Fall 2010

CIS 315 - Reading Packet: "Simple Reports - Part 2"

Sources:
* Oracle9i Programming: A Primer, Rajshekhar Sunderraman, Addison Wesley.
* Classic Oracle example tables empl and dept, adapted somewhat over the years

Introduction to enhancing simple ASCII reports with the help of
SQL*Plus commands

[this section is being repeated from the Week 12 posting, so that all of the report intro will be here...]

You've seen how query results are displayed by default in SQL*Plus; they are usually OK, but
sometimes you'd like something that looks "nicer". "Nicer" here might mean numbers formatted to the
same number of decimal places, or with a nice title, or with a complete column heading, or even
without ugly line-wrapping.

So, in this section we'll talk about SQL*Plus commands you can use to change how a query's results
are *displayed*, so that they are more suitable for use as a *report* (a presentation of data that is well-
formatted, attractive, and self-explanatory on its own to a reader).

One very short first command: if you simply type /,

/

...in SQL*Plus, that will cause the previous *SQL* command to be re-run. (Not the previous SQL*Plus
command, mind you -- the previous SQL command.) This can be handy when you are tweaking your
query formatting for a report.

For example, the last SQL command I performed was querying the salary_avgs view. If I now type just

/

...I'll again see the results of that query:

JOB SALARY_AVG
---------- ----------
Analyst 3000
Manager 2758.33333
President 5000
Salesman 1400

clear command
We'll be discussing setting up break, column, and compute commands. A report script should first make
sure that some *previous* values for these are not about to mess up our results. So, it is good form to

CIS 315 - Reading Packet: "Simple Reports - Part 2" p. 2
Sharon Tuttle - Fall 2010

clear any previous values for these at the beginning of a report script:

clear breaks
clear columns
clear computes

-- compliments of S. Griffin: yes, this works, too!!!

clear breaks columns computes

feedback
You know that little line that follws some query results, indicating how many rows were selected? It
has a name -- it is called feedback.

It turns out that SQL*Plus includes commands that let you tweak this feedback, changing when it
appears or even turning it off altogether.

First, if you just want to know the current value for feedback, this SQL*Plus command will tell you:

show feedback

And, here is how to set the feedback to a different number:

set feedback 3

The following, then, would let you see the effects of this:

show feedback

-- this'll note that 3 rows were selected.

select *
from painter;

-- this will not note that one row was:

select *
from painter
where ptr_lname = 'Monet';

And sometimes, for a formal report, you just want to turn feedback off:

set feedback off

pagesize
pagesize is the number of lines in a "page" (the quantum that Oracle will display before re-displaying
column headings, etc.)

You can see the current value of pagesize with:

CIS 315 - Reading Packet: "Simple Reports - Part 2" p. 3
Sharon Tuttle - Fall 2010

show pagesize

...and you can set the pagesize to a desired value as so (here, I am setting it to 30 lines):

set pagesize 30

One nice trick to know: if you are essentially trying to write queries to generate a flat file of data for
another program, you might set the pagesize to 0 to mean that you NEVER want page breaks.

set pagesize 0

linesize
linesize is used to indicate how many characters are in a line (before line-wrapping will occur).

You can see its current value with:

show linesize

...and you can reset it with something like this (here, I am setting it to 50 characters):

set linesize 50

newpage
If you have been looking closely, you may have noticed that each query has a blank line before its
column headings. It so happens that there is a name for the number of blank lines that appear before the
column headings or top title (if there is one) for each page: this is called newpage.

(It also appears that each SQL select statement's result starts on a new "page", pagesize- and and
newpage-wise.)

To see the current value of newpage:

show newpage

Here's an example of setting it (here, I am setting it to 5 lines):

set newpage 5

Now I can also admit that, oddly enough, the number of lines in a page, in practice, is actually
pagesize + newpage

...odd but true!

And, again, when your goal is to create a flat file of data, setting newpage to 0 is a very good idea.

[the "new" Week 13 lab material begins here]

CIS 315 - Reading Packet: "Simple Reports - Part 2" p. 4
Sharon Tuttle - Fall 2010

column command
The SQL*Plus column command is used to specify column formatting when you project a column in a
query.

It is important to remember, especially when you start using the column command, that how you
choose to format something does NOT change how it is actually stored in the database -- it only
changes how it appears in the current query. A column command is only giving display preferences.

column has many options and possibilities, and I am just demonstrating a few of the most important
here. You can google to find/read up on more, if you are interested (it looks like "Oracle sqlplus
column command" has some promising results...)

The basic format for the column command is:

column col_to_format heading desired_heading format desired format

If you want blanks in a desired column heading, you should enclose the column in single or double
quotes; if you want all of a heading to show, be sure to format it wide enough for all of that heading to
fit! You can also specify that a heading print across multiple lines by putting in | in the heading where
you want the next heading-line to begin.

column command - non-numeric columns
You specify the format of the column based on the type of data in that column, For varchar2, char, and
date data, you use format a followed by how many characters wide you want that column to be
displayed with.

So, the column command below is saying, for any column named empl_last_name, display it with the
heading

Employee
Last Name

in a 25-character-wide column:

column empl_last_name heading 'Employee|Last Name' format a25

Try this to see how the column command affects how this query's results are displayed:

set linesize 80

select *
from empl;

If you don't have blanks in the heading, you don't have to have single quotes around it:

column empl_last_name heading Employee|Name format a25
/

CIS 315 - Reading Packet: "Simple Reports - Part 2" p. 5
Sharon Tuttle - Fall 2010

...but you MUST have quotes if a column heading has a space (this will FAIL:)

column empl_last_name heading Employee|Last Name format a25

This shows that double quotes work, too:

column empl_last_name heading "Employee|Last Name" format a25
/

What do you think happens if you deliberately format an alphanumeric column too narrowly? Try this
and see:

column empl_last_name heading 'Employee|Last Name' format a2
/

...but if you put TRUNCATED or TRU after a format, it will behave differently; try this to see how it
behaves differently:

column empl_last_name heading 'Employee|Last Name' format a2 TRUNCATED
/

Putting WORD WRAPPED or WOR has a slightly different effect -- the following will demonstrate the
difference (the default is actually named WRAPPED, shown here to demonstrate the difference):

insert into painting
values
('Waterlilies', '108');

insert into painting
values
('Yet four more', '108');

column ptg_title format a7 WOR

select *
from painting;

column ptg_title format a7 WRAPPED
/

What if you just want to, say, format a column so that it is wide enough for its entire heading, but you
don't want to specify a different heading? Then just don't put in a heading part:

column empl_num format a8

(Note that the empl_num column is actually declared to be char(4), so you do need a in its format...)

column command - numeric columns
For a numeric column, you do NOT use a in its format. Instead, you specify a numeric format pattern.
There are many options for this, too, but here are a few basics:

CIS 315 - Reading Packet: "Simple Reports - Part 2" p. 6
Sharon Tuttle - Fall 2010

* to format an integer to a certain width, express the format as that many 9's. It will then be right-
justified in a field of that size.

99999
99
99999999

* if you want a floating-point value to be formatted with a certain number of decimal places, specify
that by putting the decimal in as desired:

999.99

...would format a column to 2 decimal places.

* you can even include commas if you'd like large numbers to be formatted with them:

999,999,999.99

Here are some examples involving salary:

column salary heading Salary format 99999
select empl_last_name, dept_num, salary
from empl;

Be careful -- Oracle behaves very differently if you format a numeric column to be too narrow than it
does if you format a non-numeric column to be too narrow! Try this, and see what I mean:

column salary heading Salary format 99
/

Now format to a certain number of decimal places: (note that it rounds rather than truncates...)

column salary heading Salary format 99999.99
/

Now format values over 999 with commas:

column salary heading Salary format 99,999.99
/

Oh, and you can include a dollar sign, if you'd like:

column salary heading 'Salary' format $99,999.99
/

You can also ask to give one column the same format as another using like, as so:

column salary heading Salary format $99,999.99
column commission like salary heading 'Commission'

CIS 315 - Reading Packet: "Simple Reports - Part 2" p. 7
Sharon Tuttle - Fall 2010

select empl_last_name, salary, commission
from empl
where job_title = 'Salesman';

Views can work very nicely in reports:

drop view dept_avgs;

create view dept_avgs(dept_name, dept_avg) as
select dept_name, avg(salary)
from empl e, dept d
where e.dept_num = d.dept_num
group by dept_name;

column dept_avg heading "Dept Avg" format $99,999.99
column dept_name heading "Dept Name"

-- check out how much better these look!

select *
from dept_avgs
order by dept_name;

select *
from dept_avgs
order by dept_avg desc;

break command
The break command is used with queries including an order-by clause to get "prettier" ordered-row
table displays. (And let's face it: the rows in reports should always be ordered in a way that makes
sense for that report!)

Notice this query and its results:

select dept_num, empl_last_name, salary
from empl
order by dept_num;

column dept_num heading 'Dept' format a4
/

See how the dept_num is repeated in consecutive rows? Well, all break does is make such a display
"prettier" by only displaying the FIRST value when several rows have the SAME value. That is, try the
following to see what I mean:

-- this BREAK causes only the "first" dept_num in a several consecutive to
-- display;

break on dept_num
/

You can even specify that you'd like 1 or more blank lines between each different dept_num:

CIS 315 - Reading Packet: "Simple Reports - Part 2" p. 8
Sharon Tuttle - Fall 2010

-- I can get blank lines between each broken-into section:

break on dept_num skip 1
/

Only one break command can be in effect at a time; so put ALL of the columns you want to "break" on
in a single break command...! Consider this:

column mgr heading Mgr
select dept_num, mgr, empl_last_name, salary
from empl
order by dept_num, mgr;

-- can have the break effect on more than one column at a time ---
-- BUT only 1 break command can be in effect at one time, so
-- put ALL the columns you want to break on in a single break command

break on dept_num on mgr skip 1
/

-- and to NOT get the skip after each manager? (thanks to C. McLain)

break on dept_num skip 1 on mgr
/

break on dept_num skip 1 on mgr skip 2
/

You might remember that a SQL*Plus command is only supposed to be on ONE line. If a SQL*Plus
command is getting too long -- and a break command can get long! -- you can CONTINUE to the next
line (you can ask sqlplus to pretend it isn't a new line yet) by using a - at the end of the line:

break on dept_num -
on mgr skip 3
/

compute command
compute only makes sense when used with break. It just lets you specify that you'd like some
computation to be done for the rows with the same value of something you are break'ing on...!

Study the results of executing the following to see what the compute is causing to happen here:

break on dept_num skip 1 on mgr
compute avg min max of salary on dept_num
/

By the way, you can type simply compute or break to see the current definition for these that you are
using.

-- 'compute' will show you your current compute definition

CIS 315 - Reading Packet: "Simple Reports - Part 2" p. 9
Sharon Tuttle - Fall 2010

compute

-- and 'break' will show you your current break definition

break

You know how there can only be one break command in effect at a time? You can have multiple
compute commands -- but only 1 per column! If you try to put in a 2nd compute on the same column,
the new version with replace the old.

compute count of empl_last_name on dept_num
/

-- TWO computes in effect now:

compute

-- does this one replace earlier?

compute count of salary on dept_num
/

-- yes!

compute

Here are a few other compute-related options students have let me know about:

--
-- to customize how your compute results are labeled:
--
-- label option for compute command: (compliments of Mr. Serrano)
--

column dept_num format a5
break on dept_num skip 1
compute sum label 'total' of salary on dept_num

--
select dept_num, empl_last_name, salary
from empl
order by dept_num;
--

--
-- to get a "grand" (overall) computation:
-- (compliments of L. Holden)
--
-- "Breaking and computing "on report" provides a grand total for
-- an entire report.... See code below, it computes a total of
-- employees by department and a grand total of all employees:"

break on dept_num skip 1 on REPORT
compute count of empl_num on dept_num
compute count label Total of empl_num on REPORT

CIS 315 - Reading Packet: "Simple Reports - Part 2" p. 10
Sharon Tuttle - Fall 2010

column dept_num format a7
column empl_num format a7
set pagesize 53

select dept_num, empl_num
from empl
order by dept_num;

top and bottom titles
You can specify top titles or bottom titles for each "page" using ttitle and btitle. Here's how you can
see the current values set for these:

show ttitle
show btitle

...and here are examples showing how you can specify top and bottom titles:

-- want a TITLE aTOP each page? ttitle

ttitle 'Beautiful|Three Line|Top Title'

-- want a BOTTOM title? btitle

btitle 'Gorgeous Two-line|Bottom Title'

/

GOOD REPORT SCRIPT ETIQUETTE
Once you change any of these display settings, they stay changed until you change them again, or until
you exit your SQL*Plus session. So, if you run a script, and then type in additional commands at the
SQL> prompt, those additional commands will have whatever display settings were made in that script!

This can be startling to unwary users, so, at the end of a report script (any script that modifies the
display settings), you SHOULD "clean up", setting the display settings back to their "default" values.

Ms. Koyuncu noted that you could easily put these "cleanup" commands into their own script, and then
just call that script at the end of your report script. That would be very slick indeed.

--**---
-- AT THE END OF A REPORT SCRIPT, YOU *SHOULD*****
-- clean up when done (so as to not shock user with their
-- next query)

-- better to put the below lines into another cleanup
-- script you can call frequently! (thanks to T. Koyuncu)
-- @ cleanup

clear breaks
clear columns
clear computes

CIS 315 - Reading Packet: "Simple Reports - Part 2" p. 11
Sharon Tuttle - Fall 2010

set space 1
set feedback 6
set pagesize 14
set linesize 80
set newpage 1
set heading on

-- to turn off titles set!
ttitle off
btitle off

flat file example
As a little bonus, here is an example of creating almost a comma-separated flat file of data from a
database (which actually appears to work properly when I tried if in Fall 2009! 8-)):

--***---
-- quick flat file example:
--***---

-- aha! space is # of spaces BETWEEN columns; default is 1

set space 0

set newpage 0
set linesize 80
set pagesize 0
set echo off
set feedback off
set space 0

set newpage 0
set linesize 80
set pagesize 0
set echo off
set feedback off
set heading off

spool flat_empl_data.txt

select empl_last_name || ',' || salary
from empl;

-- don't forget to spool off, or results file may be empty or
-- incomplete;

spool off

-- AT THE END OF A REPORT SCRIPT, YOU *SHOULD*****
-- clean up when done (so as to not shock user with their
-- next query)

clear breaks
clear columns
clear computes

CIS 315 - Reading Packet: "Simple Reports - Part 2" p. 12
Sharon Tuttle - Fall 2010

set space 1
set feedback 6
set pagesize 14
set linesize 80
set newpage 1
set heading on

-- to turn off titles set!
ttitle off
btitle off

Some useful string- and date- and time-related functions
This section discusses some Oracle functions related to strings, dates, and times that can be handy in
creating more-readable/"prettier" queries and reports. It is not an exhaustive coverage; the goal is to
give you some idea of the possibilities (so you can explore further as inspiration strikes you).

Reminder: concatenation
We'll start with a reminder of a string operation we have already discussed and practiced:
concatenation! (Why? well, your project's final milestone is coming up, and several well-formatted
reports are required, and concatenation can definitely help in producing readable, attractive reports!)

Hopefully, then, you recall that || can be used to combine one or more string literals or columns,
projecting the combined result as a single column. So, for example, the following query projects a
single column, combining each employee last name, a ', $', and employee salary:

select empl_last_name || ', $' || salary "Pay Info"
from empl
order by empl_last_name;

Assuming that I've restored the empl table to its usual 14 rows, the above query will result in:

Pay Info
--
Adams, $1100
Blake, $2850
Ford, $3000
James, $950
Jones, $2975
King, $5000
Martin, $1250
Michaels, $1600
Miller, $1300
Raimi, $2450
Scott, $3000

Pay Info
--
Smith, $800
Turner, $1500
Ward, $1250

CIS 315 - Reading Packet: "Simple Reports - Part 2" p. 13
Sharon Tuttle - Fall 2010

14 rows selected.

When creating a report, concatenation can frequently be used to create more-readable results. As just a
few examples:

* if you have first and last names for people, and you wish to display them alphabetically (as in a
class role, or a phone directory), it looks good to concatenate them last name first, with a comma
in-between

select last_name || ', ' || first_name "Name"
from ...
where ...
order by last_name;

...which might look like:

Name

Adams, Annie
Cartwright, Josh
Zeff, Pat

* ...although for a mailing list, or name tags, etc., you'd probably prefer to have the first name first,
and maybe you'd even order them by first name:

select first_name || ' ' || last_name "Attendees"
from ...
where ...
order by last_name;

...which might look like:

Attendees

Annie Adams
Josh Cartwright
Pat Zeff

* and many combinations of street, city, state, and zip columns are possible:

select city || ', ' || state || ' ' || zip
from ...
where ...

select zip || '-' || city
from ...
where ...

select state || ': ' || city
from ...

CIS 315 - Reading Packet: "Simple Reports - Part 2" p. 14
Sharon Tuttle - Fall 2010

where ...

...etc., and these can be ordered by city and then zip, by state and then city and then zip, by zip, by
some other column (such as last name or department or salary or hiredate), etc., depending on
what's appropriate for that query.

Reminder: date-related function: sysdate
We've already seen one date-related function: sysdate. You may recall that this function returns the
current date:

insert into empl(empl_num, empl_last_name, job_title, mgr, hiredate, salary,
 dept_num)
values
('6745', 'Zeff', 'Analyst', '7566', sysdate, 3000, '200');

...and the hiredate for Zeff will be the date that this insertion was performed. And sysdate can be used
in a select as well -- this simply projects the current date for each row in the "dummy" table dual,
which only has one column and one row, and so simply projects the current date. So if I run the
following on April 27th:
select sysdate
from dual;

....then the result would be:
SYSDATE

27-APR-09

Date- and time-related function: to_char
Now, for some additional functions. Oracle function to_char expects a date or a number and a format
string, and it returns a character-string version of the given date or number based on that given format.

A complete coverage of all of the possibilities for the format string is beyond the scope of this
introduction, but you can easily find out more on the Web. Here are a few examples, though, to give
you some ideas of the the possibilities:

For example, this will project just the month of the given date, projecting that month as the entire name
of that month:
select empl_last_name, to_char(hiredate, 'MONTH') "MONTH HIRED"
from empl;

...resulting in:
EMPL_LAST_NAME MONTH HIR
--------------- ---------
King NOVEMBER
Jones APRIL
Blake MAY

CIS 315 - Reading Packet: "Simple Reports - Part 2" p. 15
Sharon Tuttle - Fall 2010

Raimi JUNE
Ford DECEMBER
Smith DECEMBER
Michaels FEBRUARY
Ward FEBRUARY
Martin SEPTEMBER
Scott NOVEMBER
Turner SEPTEMBER

EMPL_LAST_NAME MONTH HIR
--------------- ---------
Adams SEPTEMBER
James DECEMBER
Miller JANUARY
Zeff APRIL

15 rows selected.

If you'd like the month with an uppercase first letter and lowercase letter for the rest, use the format
string 'Month' (and here we'll use a column command, too, to get a non-chopped heading):

column hiremonth heading "Month Hired" format a11

select empl_last_name "Last Name", to_char(hiredate, 'Month') hiremonth
from empl;

...resulting in:

Last Name Month Hired
--------------- -----------
King November
Jones April
Blake May
Raimi June
Ford December
Smith December
Michaels February
Ward February
Martin September
Scott November
Turner September

Last Name Month Hired
--------------- -----------
Adams September
James December
Miller January
Zeff April

15 rows selected.

These format examples could easily get a bit long-winded, so here are a few more examples all in one
query (and some of these also show how you can include some literals in the format strings, too):

CIS 315 - Reading Packet: "Simple Reports - Part 2" p. 16
Sharon Tuttle - Fall 2010

select to_char(sysdate, 'YYYY') year,
 to_char(sysdate, 'Mon YYYY') mon_year,
 to_char(sysdate, 'MM-DD-YY') num_version,
 to_char(sysdate, 'Day, Month DD, YYYY') long_version,
 to_char(sysdate, 'DY - Mon DD - YY') brief_versn
from dual;

Granted, sometimes you get surprises -- when run on 4-27-09, the above results in:

YEAR MON_YEAR NUM_VERS LONG_VERSION BRIEF_VERSN
---- -------- -------- ----------------------------- -----------------
2009 Apr 2009 04-27-09 Monday , April 27, 2009 MON - Apr 27 - 09

I think the "gaps" are based on including the space needed for the "longest" weekday and month names;
there are string functions you can use to get rid of such spaces, which we'll discuss shortly, for times
when you don't want those gaps.

Here is a summary of some of the available date-related format strings for use in a to_char format
string:

'MM' - month number
'MON' - the first 3 letters of the month name, all-uppercase
'Mon' - the first 3 letters of the month name, mixed case
'MONTH' - the entire month name, all-uppercase
'Month' - the entire month name, mixed case
'DAY' - fully spelled out day of the week, all-uppercase
'Day' - fully spelled out day of the week, mixed case
'DY' - 3-letter abbreviation of the day of the week, all-uppercase
'Dy' - 3-letter abbreviation of the day of the week, mixed case
'DD' - date of the month, written as a 2-digit number
'YY' - the last two digits of the year
'YYYY' - the year written out in four digits

even:

'D' - number of date's day in the current week (Sunday is 1)
'DD' - number of date's day in the current month
'DDD' - number of date's day in the current year

Now, why did I say that to_char was a time-related function as well? Because, although it is not
obvious, you can store both a date and a time in a column of type DATE -- and you can then project the
time information of a given date with format strings such as:

'HH12' - hours of the day (1-12)
'HH24' - hours of the day (0-23)
'MI' - minutes of the hour
'SS' - seconds of the minute
'AM' - displays AM or PM depending on the time

...and when I ran the following at about 11:05 pm on Monday, April 27th:

select to_char(sysdate, 'D DD DDD Day, Mon YYYY - HH12 HH24 MI SS AM') "UGLY"

CIS 315 - Reading Packet: "Simple Reports - Part 2" p. 17
Sharon Tuttle - Fall 2010

from dual;

...the result was:

UGLY

2 27 117 Monday , Apr 2009 - 11 23 05 30 PM

a few more examples of date-related operations and functions
Have you noticed yet that the Oracle Date type supports + and -? If you add a number to a date, the
result is the date that results from adding that number of days to that date! If run on April 27th, 2009,
then:

select sysdate + 1
from dual;

...results in:

SYSDATE+1

28-APR-09

Now, you'll find that this addition or subtraction will work fine with a column declared to be a date --
but what if, for whatever reason, you want to add or subtract from a date literal? (Or if you want to use
some date function given a date literal?) You'll find that the string that you use for insertion will not
work:

-- FAILS!!
select '31-DEC-08' + 1
from dual;

...with the error message:

ERROR at line 1:
ORA-01722: invalid number

But:

to_date - expects a date-string, and returns the corresponding date

...can allow you to do this: (and this example now demonstrates how, yes, the month and year
boundaries are indeed handled reasonably):

select to_date('31-DEC-08') + 1
from dual;

...results in:

TO_DATE('

CIS 315 - Reading Packet: "Simple Reports - Part 2" p. 18
Sharon Tuttle - Fall 2010

01-JAN-09

next_day - expects a date and a string representing the day of the week, and returns the date of the next
date after the given date that is on that day of the week

If you remember that April 27, 2009 was a Monday, then:

select next_day('27-Apr-2009', 'TUESDAY') nxt_tues,
 next_day('27-Apr-2009', 'MONDAY') nxt_mon,
 next_day('27-Apr-2009', 'FRIDAY') nxt_fri
from dual;

...results in:

NXT_TUES NXT_MON NXT_FRI
--------- --------- ---------
28-APR-09 04-MAY-09 01-MAY-09

add_months - expects a date and a number of months, and results in the date that many months from
the given date;

months_between - expects two dates, and returns the number of months between those two dates
(positive if the first date is later than the second, negative otherwise)

select add_months('30-Jan-09', 1) one_mth_later,
 months_between('15-Apr-09', '15-Jan-09') diff1,
 months_between('15-Apr-09', '01-Jun-09') diff2
from dual;

...results in:

ONE_MTH_L DIFF1 DIFF2
--------- ---------- ----------
28-FEB-09 3 -1.5483871

A few string-related functions
initcap - expects a string, and returns a string with an initial uppercase letter

select initcap('SILLY') looky
from dual;

...results in:

LOOKY

Silly

lower - expects a string, and returns an all-lowercase version of your string
upper - expects a string, and returns an all-uppercase version of your string

select lower(empl_last_name), upper(empl_last_name)

CIS 315 - Reading Packet: "Simple Reports - Part 2" p. 19
Sharon Tuttle - Fall 2010

from empl
where job_title = 'President';

...results in:

LOWER(EMPL_LAST UPPER(EMPL_LAST
--------------- ---------------
king KING

lpad - "left pad" - expects a string, a desired length, and a padding character, and returns a string that is
the given string padded on the left with the given padding character to result in a string with the
desired length

rpad - "right pad" - expects a string, a desired length, and a padding character, and returns a string that
is the given string padded on the right with the given padding character to result in a string with the
desired length

select lpad(empl_last_name, 12, '.') dots, rpad(empl_last_name, 15, '?') huh,
 lpad(empl_last_name, 12, ' ') right_justifd
from empl;

...results in:

DOTS HUH RIGHT_JUSTIF
------------ --------------- ------------
........King King??????????? King
.......Jones Jones?????????? Jones
.......Blake Blake?????????? Blake
.......Raimi Raimi?????????? Raimi
........Ford Ford??????????? Ford
.......Smith Smith?????????? Smith
....Michaels Michaels??????? Michaels
........Ward Ward??????????? Ward
......Martin Martin????????? Martin
.......Scott Scott?????????? Scott
......Turner Turner????????? Turner

DOTS HUH RIGHT_JUSTIF
------------ --------------- ------------
.......Adams Adams?????????? Adams
.......James James?????????? James
......Miller Miller????????? Miller
........Zeff Zeff??????????? Zeff

15 rows selected.

And, of course, if a function returns a string, then a call to that function can be used wherever a string is
permitted, including within another function call:

select lpad(to_char(hiredate, 'Day'), 14, ' ') ||
 to_char(hiredate, '- Month YY') "Hiredate"
from empl;

...which results in:

CIS 315 - Reading Packet: "Simple Reports - Part 2" p. 20
Sharon Tuttle - Fall 2010

Hiredate

 Sunday - November 91
 Tuesday - April 91
 Wednesday- May 91
 Sunday - June 91
 Tuesday - December 91
 Monday - December 90
 Wednesday- February 91
 Friday - February 91
 Saturday - September 91
 Saturday - November 91
 Sunday - September 91

Hiredate

 Monday - September 91
 Tuesday - December 91
 Thursday - January 92
 Monday - April 09

15 rows selected.

ltrim - expects a string, returns that string with any leading blanks (blanks starting the string) removed
rtrim - expects a string, returns that string with any trailing banks (blanks ending the string) removed

select ltrim(' Hi ') lftchop, rtrim(' Hi ') rtchop,
 rtrim(to_char(sysdate, 'Day')) || ', ' || rtrim(to_char(sysdate, 'Month'))
 || ' ' || to_char(sysdate, 'DD, YYYY') nicer
from dual;

...which results in:

LFTCH RTCHO NICER
----- ----- -----------------------------
Hi Hi Monday, April 27, 2009

length - expects a string, and returns the number of character in that string (its length)
substr - expects a string, the position to start at in that string (where the first character is position 1),

and how long a substring is desired, and returns the substring of that length starting at that
position.

 (if the 3rd argment is omitted, it returns the rest of the string starting at the given position)

select empl_last_name,
 length(empl_last_name) length,
 substr(empl_last_name, 1, 3) abb1,
 substr(empl_last_name, 3) rest
from empl;

...which results in:

EMPL_LAST_NAME LENGTH ABB REST
--------------- ---------- --- -------------

CIS 315 - Reading Packet: "Simple Reports - Part 2" p. 21
Sharon Tuttle - Fall 2010

King 4 Kin ng
Jones 5 Jon nes
Blake 5 Bla ake
Raimi 5 Rai imi
Ford 4 For rd
Smith 5 Smi ith
Michaels 8 Mic chaels
Ward 4 War rd
Martin 6 Mar rtin
Scott 5 Sco ott
Turner 6 Tur rner

EMPL_LAST_NAME LENGTH ABB REST
--------------- ---------- --- -------------
Adams 5 Ada ams
James 5 Jam mes
Miller 6 Mil ller
Zeff 4 Zef ff

15 rows selected.

Again, please note: this is not an exhaustive list of the additional functions that Oracle provides. But it
hopefully gives you an idea of the rich set of possibilities available.

	Sources:
	Introduction to enhancing simple ASCII reports with the help of SQL*Plus commands
	clear command
	feedback
	pagesize
	linesize
	newpage
	column command
	column command - non-numeric columns
	column command - numeric columns

	break command
	compute command
	top and bottom titles
	GOOD REPORT SCRIPT ETIQUETTE
	flat file example
	Some useful string- and date- and time-related functions
	Reminder: concatenation
	Reminder: date-related function: sysdate
	Date- and time-related function: to_char
	a few more examples of date-related operations and functions
	A few string-related functions

