
CIS 315 - Reading Packet: "Database Processing and Development p. 1
Sharon Tuttle - Fall 2010

CIS 315 - Reading Packet: "Database Processing and Development

SOURCES:
* Kroenke, "Database Processing: Fundamentals, Design, and Implementation", 7th edition, Chapter 1, Prentice

Hall, 1999.
* Connolly and Begg, "Database Systems: A Practical Approach to Design Implementation and Management",

3rd Edition, Addison-Wesley.
* Rob and Coronel, "Database Systems: Design, Implementation, and Management", 3rd Edition, Thomson,

1997.

Intro to Databases
Let's start with the question: What is a database? We'll work our way to a more technical definition, but to start:

a database is a collection of tables, holding information about different interrelated entities.

We'll soon discuss how an entity is some collection of instances important in a world or scenario -- and, we'll
eventually see that an entity is represented by one or more tables in a database.

But before we go on, let's make sure something is clear: is Oracle a database? is Excel? is Access?

Answer: No. Excel is a spreadsheet program, and so doesn't belong in our discussion for this class at all. But you'd
be surprised how many people think it is a "database program", because it often looks so "tabular" -- and you'd also
be amazed at the lengths people go to do things in Excel that would be more easily done with a database.

Why am I claiming that Oracle and Access are not "databases", though? Because, really, they are one level up from
that -- in the world of database design, programs/products such as Oracle, Access, FoxPro, MySQL, SQL Server,
Informix, and many more are Database Management Systems, usually abbreviated as DBMS's. A DBMS is a
program or collection of programs that acts as the interface between a user or application program and a database.
(Although, that said, we may describe a database managed by an Oracle DBMS as an Oracle database, a database
managed by an Access DBMS as an Access database, and so on.)

My favorite parallel is to think about operating systems, and how one can consider the operating system as software
that serves as the interface between the user or an application program and a computer's hardware. Likewise, a
DBMS serves as the interface between the user or an application program and a database.

This DBMS, this interface, manages the database structure, controls access to the data stored in the database, and
provides various tools to allow users/application programs to use the data. It provides a useful illusion of how the
data is organized to people and to application programs, hiding the actual physical details of how the data is actually
stored.

Before we go one: is it clear to everyone what is meant by database application? It is simply an application program
that makes use of the database. CIS 318 has as its focus the programming of such database applications.

Note that a database may be used at a variety of levels:

 * personal - one concurrent user
 * workgroup - say, less than 25 concurrent users
 * organizational - say, 100's of concurrent users

The Relationship between Application Programs and the DBMS
You'll recall that we just mentioned that either a user or an application program may interact with a DBMS. It is
certainly possible, when an application program interacts with a DBMS, that a person may be interacting with that
application program in turn (that is, a person may interact with an application program that interacts with the DBMS
to actually access database data).

Some DBMS's provide such a variety of tools for users that the line between the DBMS and application programs
has become increasingly blurred -- for example, as DBMS's offer features such as built-in forms tools, graphical
query-by-example, and so on. Although we are talking mostly about database design and implementation this
semester, you should remember that many users will interact with the final database rarely with the actual tables, but

CIS 315 - Reading Packet: "Database Processing and Development p. 2
Sharon Tuttle - Fall 2010

with various forms, reports, and queries based on the data in those tables --- that is, with applications that interact
with the DBMS.

Another point, before we proceed. Note that you are often not given the source of a DBMS (at least, not for a
commercial DBMS); you generally cannot change or modify the DBMS itself. By "database design", then, we mean
"the design of the database structure that will be used to store and manage data rather than the design of the DBMS
software".

But, if you have a sufficiently powerful DBMS, why are we so concerned about database design? Because, just as a
wonderful, rich operating system does not guarantee that a programmer will not write a scummy application
program that runs under that OS, a wonderful DBMS does not guarantee that a poorly-designed database will run
well when managed by that DBMS. "Even a good DBMS will perform poorly with a badly designed database.”

History Part 1: from File-Processing Systems to Database Systems

File-Processing Systems
(Kroenke, p. 10) It is useful "...to look at the characteristics of systems that predated the use of database
technology….", to "reveal the problems that database technology has solved", or at least alleviated.

The first business information systems stored groups of records in separate files, and were called file-processing
systems. It is useful at this point to point out that the concept of a file has had more than one meaning in computing
-- not all files are the "streams" of characters you are probably used to from the popular stream-based file
input/output packages available in such languages as C++ and Java.

An alternative view, more common in languages such as COBOL, is of a file as a collection of related records,
where each record is a collection of logically-connected fields, and where each field is a character or a group of
characters. This view, of a file as a collection of related records, is the more traditional "mainframe" view, I'd say;
and it is also the area from which databases "grew".

So, imagine it is the 1960's, and companies are (p. 16, Kroenke) "producing data at phenomenal rates in file
processing systems" … and, they were finding, as the sheer quantity of data increased, that "the data were becoming
difficult to manage, and new systems were becoming increasingly difficult to develop". In short, they were bumping
right into some important limitations of file-processing systems -- limitations that become apparent as the amount of
data involved increases:

 * separated and isolated data
 * (unnecessary) data duplication
 * application program dependence
 * incompatible files
 * difficulty of representing data in the users' perspectives

And note how the above list is not complete, by any means -- consider, for example, dealing with implementing
security or strategically sharing data when it is all stored in such record-based files.

Consider the following example, as we discuss the above limitations. Consider: you have a collection of restaurants,
some that you already like, some that you are interesting in trying. Let's say that you categorize these in different
ways --- for example,

 * by price
 * by type of food
 * by location
 * by hours (open for breakfast? at 3 am? etc.)
 * by methods of payment accepted (cash only? credit cards OK? checks OK?)

...to make it easier for those times when you want to go out to eat, but are having trouble coming up with where you
want to eat.

CIS 315 - Reading Packet: "Database Processing and Development p. 3
Sharon Tuttle - Fall 2010

One way to handle this might be to store this information in different files. You might have, say, a list of Italian
restaurants in one file, restaurants that are open all night in another, restaurants that take credit cards in a third, pizza
places in a fourth, restaurants with entrees less than $5 in a fifth, and so on. Keep this example in mind -- we'll be
coming back to it as we discuss the file-processing shortcomings listed earlier.

Separated and isolated data
Data that is separated into different files -- isolated from the data in other files -- can make that data difficult to
related to each other when that might be desired. In our small example, how would you write a program to give you
Italian restaurants that are open all night, from these files? It's not impossible, but it is difficult, and likely just
enough bother to discourage maximum use of one's data.

(Unnecessary) Data duplication
Consider our restaurant files. The same data may be stored in numerous different files, different times: for example,
the address and phone number for an inexpensive pizza place that is open all night might appear in several different
files. As another example, consider a rental client at a video rental store -- if such a company stored its information
in a file-processing system, imagine how often a customer's address, phone number, or contact information might be
stored: once for a rental file, maybe again for special orders, maybe again for special promotions, and the list goes
on.

And, the extra space this takes is not as big a problem as the potential for data integrity problems that can occur as a
result of such unnecessarily duplicated data. Consider: what if a restaurant changes its phone number? What if a
customer moves? What if you do not change all of the copies of such information? And what if a restaurant closes? I
should, then, remove all mentions of it.

Kroenke discusses how the idea of data integrity is not so much that the data in a collection, whether of files or
within a database, is correct, but that it is logically consistent within that collection of data. Can you see that if one
file lists the phone number of Larry's House o' Pastry as 555-2827, and another lists its phone number as 666-2827,
then the data in those two files is not logically consistent? And -- which, in that case, is more likely to be the correct
phone number?

Application program dependence
In a file-processing system, application programs depend on the file formats --- that is, the physical formats of files
and records become an inherent part of the application code.

Why is that such a problem? Consider: what if the file format changes? Say, an area goes from 7-digit telephone
dialing to 10-digit dialing, or you decide to store zip codes with zip-plus-4 instead of plain 5-digit zip codes. Such
changes often require changing every application program that uses a file whose record format has been changed,
maybe even if it never uses phone numbers or zip codes. When you change the physical format of a file, you may
have to change all applications that use that file, even if the change is to a field not used by that application.

Incompatible files
This is a little harder to understand now that we are so used to stream-based ASCII or Unicode files, but record-
based file format often depended on the language or product used to generate them. The result was that files from
different "sources" might end up unable to be readily combined or compared, or difficult to process jointly.

Difficulty of representing data in the users' perspectives
This issue is simply noting that, in a record-based files system, it is difficult to represent the data in a form that
seems "natural" to users, not to mention quite hard to do so quickly, or on a whim (to follow a hunch, for example).
It is hard to support queries, particularly so-called ad hoc queries. (What is a query? In the simplest sense, it is
simply a question; and an ad hoc query, then, is a "spur-of-the-moment" question, one you want to ask after the data
is there, that you didn't necessarily have in mind when gathering the data or organizing it into files.) This
discourages creative use of one's data -- and makes it very hard for others to use such data, as they have to know
how someone else organized it into files, what format they used, and so on.

We are not saying, here, that data in files are simply awful; obviously, we still use files happily and frequently. What
we are saying is that, as the quantity of data grows, it gets harder and harder to deal with data that is stored in files.
That is, we would like an alternative to files for collections of data that may be used in different ways by different

CIS 315 - Reading Packet: "Database Processing and Development p. 4
Sharon Tuttle - Fall 2010

people and different applications, especially if one wishes to encourage brainstorming and other creative uses of
such data.

Database Processing Systems
So, database technology was developed largely in answer to these limitations of file-processing systems. Basically, a
major "big idea" here is that lower-level, "file" level details should be hidden from application programs by the
DBMS. That is, the application program deals with the DBMS, not the actual files containing the data, and so the
application program does not have to know or care about the actual physical format in which the data is stored.

Hopefully, then, a database processing system has at least the potential to have the following advantages over the
file-processing approach:

 * integrated data
 * reduced (unnecessary) data duplication
 * decreased application program dependence
 * easier representation of the users' perspectives

And, there is the potential for other benefits, too, including (but certainly not limited to) improved security, more
sharing of data, economy of scale, and more.

Integrated data
In a database system, all of the application data is stored in a single facility called the database, managed and
accessed via a DBMS. A programmer does not need to write programs to consolidate the files, or to try to relate data
that may be related in different files -- instead, the application programmer indicates what is needed, and the DBMS
takes care of the actions required to do so. Instead of a collection of files, which may or may not be related, in a
database-processing system all of the data is in one "place", the database.

Reduced (unnecessary) data duplication
It is important to understand that data duplication is not eliminated in a database. But, in a well-designed database,
unnecessary data duplication can be reduced, and in a way to increase data integrity. In a well-designed database,
you generally store most information just once, but because the data is related and integrated it can be processed and
related in various ways via the DBMS as needed. And, it is reduced without losing the possibility of finding the
phone number of a restaurant, or the address of a customer, etc., regardless of the many contexts that a restaurant or
customer may be involved. And, when data duplication is reduced, that likewise reduces the chances of data
integrity problems due to changing one copy of a datum but not all others.

Note that we're going to find, during the course of the semester, that sometimes we use data duplication deliberately
for beneficial ends -- that duplicated data is not always bad -- but, we do want to avoid unnecessarily duplicated
data, and we'll be discussing what that means in some detail.

Decreased application program dependence
Because a DBMS essentially hides the actual physical file format of the data from users and application programs,
database processing reduces the dependence of programs on those file formats. A DBMS could completely change
how the physical data files implementing a particular database were formatted, and application programs using that
database would not be affected as all as long as how those applications request data from the DBMS does not
change. The DBMS really insulates the application programs from caring about the actual, physical format of the
data. Application programs are dependent on what they get from the DBMS, not on however the data within the
underlying database is stored. Better still, with many DBMS's, the application program can specify, to at least some
degree, what they want, and in what format!

(Really, this is an example of the information hiding concept that you should remember from discussing object-
oriented programming, or abstract data types!)

The benefits here can go even further -- for example, consider something like Java's Java Data Base Connectivity
(JDBC) Application Programming Interface (API), which allows you to connect to literally dozens of different
DBMS's with a single mostly-common interface.

CIS 315 - Reading Packet: "Database Processing and Development p. 5
Sharon Tuttle - Fall 2010

Easier representation of the users' perspectives
Thanks to standardized query languages and powerful abstractions such as relations, DBMS's can more easily
represent the objects found in the user's world, in the user's perspective. And, many DBMS' provide tools to get
different views of related data, from different viewpoints; we'll discuss some of these possibilities further as the
semester progresses.

This is not to say that database processing brings nothing but advantages, however. Everything has both advantages
and disadvantages. DBMS's can be very complex, and can get very large from a memory point of view (as can the
database itself). Note that one cannot say definitively whether, for a given collection of data, whether storing that
data in files or in a database managed by a DBMS would take less room; one can describe scenarios that could go
either way. DBMS's can be very expensive, and it can be likewise expensive to convert data into a database. One
also cannot state definitively whether the performance would be better for an application dealing with a DBMS than
for one dealing with files; a DBMS is designed to be more general, trying to satisfy the needs of many, whereas a
custom application can be highly optimized. And of course centralized data introduces the potential for a central
point of failure -- backups and security for centralized data have to be taken seriously.

	SOURCES:
	Intro to Databases
	The Relationship between Application Programs and the DBMS
	History Part 1: from File-Processing Systems to Database Systems
	File-Processing Systems
	Separated and isolated data
	(Unnecessary) Data duplication
	Application program dependence
	Incompatible files
	Difficulty of representing data in the users' perspectives

	Database Processing Systems
	Integrated data
	Reduced (unnecessary) data duplication
	Decreased application program dependence
	Easier representation of the users' perspectives

