
CIS 315 - Reading Packet: "Entity-relationship modeling, part 1" p. 1
Fall 2010

CIS 315 - Reading Packet: "Entity-relationship modeling, part 1"
* NOTE: you are required to follow COURSE STANDARDS for ERD's, regardless of the different ERD

notations used in different software and textbooks;

SOURCES:
* Kroenke, "Database Processing: Fundamentals, Design, and Implementation", 7th edition, Chapter 1, Prentice

Hall, 1999.
* Connolly and Begg, "Database Systems: A Practical Approach to Design Implementation and Management",

3rd Edition, Addison-Wesley.
* Korth and Silberschatz, "Database System Concepts"
* Rob and Coronel, "Database Systems: Design, Implementation, and Management", 3rd Edition, International

Thomson Publishing, 1997.
* Ricardo, "Databases Illuminated", Jones and Bartlett.

* Sunderraman, "Oracle 9i Programming: A Primer", Addison-Wesley.
* Ullman, "Principles of Database Systems", 2nd Edition, Computer Science Press.

INTRODUCTION to the ENTITY RELATIONSHIP MODEL
We are now entering our discussion of Data Modeling --- "the process of creating a representation of the users'
view of the data" (Kroenke). Kroenke gives the opinion that "it is the most important task in the development of
effective database applications" -- and, indeed, it is quite true that a poor underlying data model can make both
developers and users less than satisfied, resulting in database applications that are "difficult to use, incomplete, and
very frustrating".

When you took your first programming course, it was (hopefully!) stressed that you should determine the algorithm,
the desired program logic, before actually starting to write code, whether in C++, or Java, or whatever programming
language is being used to implement the program. This logic can be expressed in a number of reasonable ways,
including pseudocode or flow-charts. Somewhat analogously, one uses modeling to come up with a logical database
model before actually implementing a database, indeed as part of the process of determining how to reasonably
implement that database.

Make sure that this is clear, because it is a major theme in this course, and if you take this one idea away from this
course, you will be a better database designer:

You should create a logical database model BEFORE YOU EVEN
START THINKING ABOUT TABLES AT ALL.

Jumping right into creating tables is a mistake. When you jump into the table-design phase too early, it is like just
starting to type in C++ code before you have really decided what you are doing. You will likely make table design
decisions that you will either have to locate and correct later, or that will be hard to deal with and hard for users and
applications to work with.

(ASIDE:
A database design, or database schema, is the design, the foundation upon which the database and its application
are built (Kroenke). In our "mathematical" discussion of relations last week, we gave the somewhat
"mathematically-oriented" definition of a relational schema:

relation structures plus constraints on allowable data values

More often, I'll use this slightly-more pragmatic definition of a database schema/database design, from Kroenke:
This database design/database schema includes:

* its tables,
* relationships,
* domains, and
* business rules

CIS 315 - Reading Packet: "Entity-relationship modeling, part 1" p. 2
Fall 2010

(And, if you think about it, these two don't really conflict -- a relation structure does give a table's structure, and the
relationships, domains, and business rules could be viewed as constraints on allowable data values.)

There are many ways to express these elements; for the course project, I will specify how these need to be
expressed, but many means are possible. (After all, we have already discussed three different ways to depict tables!)
Many means of expressing designs/schemas are relational-DBMS-independent - with this information, you could
then actually physically implement the database so designed using any reasonable relational DBMS! (Really, this is
not unlike how a good algorithm -- or program design? -- can be programmed using any of a variety of reasonable
programming languages...)
end of ASIDE)

There is more than one way to model a database, and more than one way to depict that model -- we will be studying
one of the classic means, using the Entity-Relationship model. As we have already mentioned, the relational model
was first developed by E.F. Codd, at IBM, in 1970, based on a branch of mathematics, relational algebra. The
Entity-Relationship Model was introduced by Peter Chen in a 1976 paper. It is commonly abbreviated as the E-R
model, and diagrams based on this model are often called ERD's (Entity-Relationship diagrams). Once you have an
ERD depicting an E-R model you are satisfied with for a scenario (and, more importantly, that the client is satisfied
with), it is then quite reasonable to convert that ERD into a database schema/design, as we will see.

ERD's and the E-R model are widely used, but oddly enough there is no one standard notation for ERD's. Some
parts of the notation are fairly standard, and other parts vary quite significantly. The course text gives two variants of
such notations; other texts I have seen (including Rob&Coronel, Kroenke, Connoly and Begg, and Ricardo) have
different variations from these. However, the basic ideas, the basic underlying model, is the same -- what differs is
just how your graphically depict that information. Note that, to keep things clearer for everyone in the course, there
will be a course standard ERD notation, and you are expected to use this notation for all E-R models you create for
this course.

The entity-relationship data model is based on a perception of a real world which consists of a set of basic objects
called entities, and relationships among these objects. (Korth and Silberschatz) These can be expressed by an E-R
diagram (ERD) that expresses the overall logical structure of these entities and relationships.

Key elements of the E-R model are entities, relationships, attributes, and identifiers. (Kroenke)

ENTITIES
An entity is an object that exists and is distinguishable from other objects. (Korth and Silberschatz) It is something
that can be identified in the users' environment-of-use; it is something they may want to track or record. For
example, John Harris with Social Security Number 111-11-1111 is an entity in an IRS scenario; savings account
#114 at the Downtown Small Town Bank is an entity. The registration of a student Jones in a section 42333 of a
course Math 123 is an entity in a school. So, note that entities may be concrete, like a person or a book, or abstract,
like a holiday or a registration, or something in-between.

An entity class is a set of entities of the same type (Korth and Silberschatz), although some texts (such as this
semester's course text!) turn this on its ear and call Korth and Silberschatz' entity class an entity, and call Korth and
Silberscatz' entity an entity instance! As long as you can distinguish between the broader set of instances and an
individual instance, you should be fine. (That is, be able to distinguish between the broader set of savings accounts
and the individual instance savings account #114.) It is the broader set that you depict in an ERD.

Entity classes -- the broader set -- are virtually always depicted in ERD's as labeled rectangles (usually in landscape
orientation).

ATTRIBUTES
Attributes, or properties as they are sometimes also called, describe entity characteristics that are important in the
user's world/environment. Really, we could say that an entity is represented by a set of attributes/properties. Some
possible attributes of a CUSTOMER entity class might be Last-name, Social-security-number, Street, City, Zip-

Savings-Account

CIS 315 - Reading Packet: "Entity-relationship modeling, part 1" p. 3
Fall 2010

code, and Phone-number. If this CUSTOMER was an entity class for, say, a car dealership, would you be likely to
include such attributes as Hair-color or Fingernail-length? No, because those characteristics are not significant to
the users' world view. (Hair-color might be, however, for a CUSTOMER entity class within a make-up salon
scenario.) Some possible attributes of a Savings-Account entity class might include Account-number and Balance.

Many texts initially represent attributes within ERD's by writing their names within ovals, and connecting those
ovals to the Entity class they are for by a line. The course text follows this fine tradition. However, you can also
imagine -- if it isn't immediately obvious when you look at such diagrams -- that this gets unwieldy quite quickly!
More importantly, it starts to get in the way of reading the ERD in general. So, more often in practice, attributes are
listed separately, at the bottom of the page or on attached page(s), in a list for each entity class. That's what we'll do
for this class (although we'll add a bit more notation to these attribute lists, as will be described).

Conceptually, attributes may be simple or composite, or single-valued or multi-valued. What is meant by simple or
composite? Simple implies not further subdivisable or atomic, composite implies there are parts to be subdivided
into. Consider a Salary attribute, generally a single, indivisable value, versus a Name attribute, often subdividable
into first name, middle name, last name. Some DBMS's do have ways to handle composite attributes quite elegantly,
but some do not. To facilitate detailed queries in the future, it is wise to change composite attributes into a series of
simple attributes. (That is, have attributes Last-name and First-name rather than the attribute Name.)

What about single-values or multi-valued? This means, for a given entity, can it have a single Last-name, or might it
have multiple Last-names? If it can only have one, then Last-name is considered a single-valued entity; if it can have
more (consider an attribute Phone-number...), that attribute is considered a multi-valued entity. It is important to the
later design that multi-valued attributes, if any, are identified at the modelling stage -- but identifying them a multi-
valued is all that is needed (or desired) at this stage. Remember, we are NOT thinking about tables yet!

In the oval notation for attributes, multi-valued attributes are sometimes indicated by connecting them to their entity
rectangle with a double-line; however, since we are avoiding the oval notation, we'll instead note any multi-valued
attributes by writing (mv) after them in the entity's attribute lists.

Important note: in general, do NOT attempt to deal with multi-valued attributes by having numbered single-valued
attributes - that is, avoid such attributes as Phone-number1, Phone-number2!! It is better to just indicate that Phone-
number is a multi-valued attribute. However, sometimes, after further reflection or consultation with a client, you
discover that what the client really wants is just a single preferred-contact phone number, or a cell phone and a home
phone, distinguished accordingly. If so, that's how the attributes should be set up (Preferred-phone, or Cell-phone
and Home-phone, for example). But multi-valued attributes are simply a part of many scenarios, and the important
thing in the modeling stage is to simply note them as such. In an ERD, attributes will be assumed to be single-valued
unless specifically noted as multi-valued.

IDENTIFIERS
Entity classes often have identifiers, identifying attribute(s), which are attribute(s) that name, or identify, entity
instances." Do we mean primary key? NO, because these are not tables yet! (We'll eventually see that each entity
ends up being represented as one OR MORE tables in the eventual database design/schema.) I think this is more to
better characterize the entity classes at the modeling stage, and perhaps to later suggest possible reasonable
candidate keys -- BUT at the modeling stage, these don't have to be as robust as the eventual tables' primary keys
will be designed to be. These may be a single attribute -- Account-number -- or composite, made up of several
attributes -- {First-name, Last-name, Middle-Initial}. As you can see by that 2nd example, these may not even
necessarily be unique yet, at this modeling stage -- we often identify people by their names, even though we know
they aren't unique. It is more important, while modeling, to represent how users tell instances of entity classes apart.
We'll think about (and devise) good primary keys for the eventual tables later, when we'll be in a better position to
do so.

So, how will we indicate identifiers, identifying attributes, in our ERD's? We'll underline them or write them in all-
uppercase within our attribute lists for each entity. (In the oval notation, their names are often underlined or written
in all-caps within their respective ovals as well!)

RELATIONSHIPS
A relationship is an association among several entities. And, again, we have relationship classes, and relationships
(or relationships, and relationship instances), but, again, as long as you can keep the overall set and the individual

CIS 315 - Reading Packet: "Entity-relationship modeling, part 1" p. 4
Fall 2010

instance straight, you should be fine. Relationship classes are associations amongst entity classes, relationship
instances are associations amongst entity instances, and people just tend to say "relationships" after a while and
depend on context to indicate which is really meant, relationship classes or relationship instances.

If you are tempted to give a relationship an attribute -- which is permitted in some variants of ERD's -- I usually
suspect that there is a buried entity class trying to make itself known, often a significant association or transaction
within that scenario. I think it is often clearer to determine what that association or transaction entity is, and to model
that instead.

We will give each relationship class a name; it is hard to choose descriptive names that work in "both" directions of
the relationship, so don't worry if they are rather "unidirectional". I think "verb-based" names work best for
relationships. Avoid using the same name for different relationships.

So, for some examples: we may define a relationship which associates Customer Harris with Savings-Account #114.
That is, perhaps Harris is the owner of Savings-Account #114; we might call this an owns relationship. That
relationship is an instance of the more general relationship class owns, a relationship between the Customer entity
class and the Savings-Account entity class.

Formally, a relationship class is a mathematical relation on n >= 2 (possibly non-distinct) entity classes.

Relationships between entity classes are almost always indicated in ERD's by placing a line between the related
entity classes. Often, this line has a diamond on it, and we'll follow this practice for CIS 315 DL ERD's. You'll then
write the name of the relationship on or near that diamond (whichever is most convenient for you).

 Professor teaches Class

Degree of a relationship: The degree of a relationship is the number of entities involved in a relationship. As
defined in the original E-R model, relationships may exist among many entities, although usually they only do so
among 2. Such relationships -- with a degree of 2 - are called binary relationships, and most of the relationship
classes in a database system are binary. They tend to work best in practice within the relational model. So,
relationships of a higher degree are usually re-cast as several binary relationships (possibly with the addition of
association-entity classes).

MAXIMUM CARDINALITIES
An E-R model may define certain constraints to which the contents of a database must conform. One important
constraint is maximum cardinalities (sometimes also called mapping cardinalities) which express the number of
entities [entity instances] to which another entity [entity instance] can be associated via a relationship [instance].

For a binary relationship R between entity classes A and , the maximum cardinality must be one of the following:

* 1:1 or 1-1 (read: "one-to-one")
An entity [instance] in A is associated with at most one entity [instance] in B, and an entity [instance] in B is
associated with at most one entity instance in A.

This is actually the rarest maximum cardinality in practice, and you should be careful not to use it where it isn't
really appropriate. However, assume you have a scenario with an Employee entity class and a Company-car
entity class, and that it is a business rule in this scenario that every company car can be assigned to at most one
employee (ever), and that no employee can be associated with more than one company car, ever. Then the
maximum cardinality of this relationship class -- let's name it assigned-car -- is 1:1.

* 1:N or 1-N (read: "one-to-many")
An entity [instance] in A is associated with possibly-many entity [instances] in B, and an entity [instance] in
B, however, can be asociated with at most one entity in A.

Customer Accountowns

CIS 315 - Reading Packet: "Entity-relationship modeling, part 1" p. 5
Fall 2010

This is the most common maximum cardinality in practice. Assume a scenario of a university, in which an
instructor can teach several class sections each semester, but each class section is only permitted to have a
single instructor of record (official teacher, if you will). That is, an individual instructor can be related to
several class sections, but each class section can be related to at most one instructor. Then the maximum
cardinality of this relationship class -- let's name it teaches -- is 1:N.

(Be careful with these -- it matters very much which entity class is the 1, and which is the N, in such
relationships!)

* N:M or N-M (read: "many-to-many")
An entity [instance] in A is associated with possibly-many entities [entity instances] in B, and an entity
[instance] in B is associated with possibly-many (and possibly a different number of) entities [entity instances]
in A.

This is a not-uncommon maximum cardinality in practice. Assume the scenario of a university, in which a
student can major in more than one department, and a department of course can be majored in by more than
one student. Then the maximum cardinality of this relationship class -- let's name it majors-in -- is M:N.

Now, how do you express these maximum cardinalities in an E-R diagram? This is a BIG point of variation, and can
lead to definite issues of confusion if all those working on a project do not agree on a standard notation! For this
course, you are required to indicate maximum cardinalities within an ERD as follows: we will put the 1 or M or N
near the relationship line, near the entity it goes with.

For example:

(Note that, for the relationship class majors-in between Student and Department, I don't care which has the N and
which has the M. What is important is that one is N and one is M.)

The appropriate maximum cardinality for a particular relationship is obviously dependent on the users’ model that
is being modelled by the relationship class. Consider again the teaches relationship class between Instructor and
Class-section. If the business rules for the scenario note that a class-section must be taught by at most one
instructor, then the relationship is 1:N as shown. However, if the business rules indicate that some courses can be
team-taught, then this relationship would instead be M:N (a class-section can be taught by multiple instructors, and
an instructor can teach multiple course-sections), and its maximum cardinalities would be changed accordingly.

NOTE: as you are developing a model, you will often come upon such questions -- how many instructors can a
course-section have? Can a company-car be assigned to more than one employee? etc. In the real world, you would
consult with your client when such questions come up, record the answer in the business rules for the scenario, and
then reflect that answer in your model. (For your course project, you will pretend to consult with your client, and
record their "answers" in your business rules.) At the very least, you should record such assumptions as assumed
business rules, so you will have them available if you do get a chance to ask later (or if some concern or problem
comes up!)

Employee Company-car
assigned-car

1 1

Instructor Class-section
teaches

1 N

Student Department
majors-in

N M

CIS 315 - Reading Packet: "Entity-relationship modeling, part 1" p. 6
Fall 2010

Maximum cardinalities have important implications for the eventual database design/schema that will result; it is
important to note them in an ERD, and it is important that they reflect the users' view of their world!

MINIMUM CARDINALITIES
Maximum cardinalities indicate what can be the case at MOST -- how many instructors CAN a course section be
taught by, at most? How many departments CAN a student major in, at most? And these are usually discussed in
broad terms: one or many, 1:1, 1:N, N:M.

They do not indicate whether a relationship must exist for every entity [instance] within an entity class. That's what
is indicated by minimum cardinality, and usually minimum cardinalities are 1 (the relationship must exist on that
end) or 0 (the relationship doesn't have to exist on one end). Does an instructor have to teach any class sections?
Does a class section have to have at least one instructor? Does a student have to major in at least one department?
Does a department have to have at least one student majoring in that department?

Like maximum cardinalities, you need to consider both "ends".

And if there is much variation between how maximum cardinalities are indicated in ERD's, there is even MORE
variation between how minimum cardinalities are indicated in ERD's! The course-required notation for minimum
cardinalities will be as followed:

* if each entity [instance] must participate in that relationship, place a 1 or a dash or a short line directly on the
relationship line (perpendicular to the relationship line) near that entity class' rectangle.

* if each entity [instance] is not required to participate in that relationship, place a 0 or oval or obviously-
roundish-shape directly on the relationship line near that entity class' rectangle.

For example, if an individual instructor isn't required to necessarily teach any courses, but every class section must
be taught by exactly one instructor, then here is what the ERD would look like with minimum cardinalities added:

Note that one could read the above as indicating that an Instructor instance may teach from zero to many class-
sections, and a class-section instance must be taught by 1 and only 1 instructors (or, exactly one instructor).

Instructor Class-section
teaches

1 N

	SOURCES:
	INTRODUCTION to the ENTITY RELATIONSHIP MODEL
	ENTITIES
	ATTRIBUTES
	IDENTIFIERS
	RELATIONSHIPS
	MAXIMUM CARDINALITIES
	MINIMUM CARDINALITIES

