
CIS 315 - Reading Packet: "Transaction management, part 2" p. 1
Sharon Tuttle - Fall 2010

CIS 315 - Reading Packet: "Transaction management, part
2"

Sources:
* Ricardo, "Databases Illuminated", Chapter 10, Jones and Bartlett.
* Kroenke, "Database Processing: Fundamentals, Design, and Implementation", 7th edition, Prentice

Hall, 1999.
* Rob and Coronel, "Database Systems: Design, Implementation, and Management", 3rd Edition,

International Thomson Publishing, 1997.
* Connolly and Begg, "Database Systems: A Practical Approach to Design Implementation and

Management", 3rd Edition, Addison-Wesley.
* Korth and Silberschatz, "Database System Concepts"
* Sunderraman, "Oracle 9i Programming: A Primer", Addison-Wesley.
* Ullman, "Principles of Database Systems", 2nd Edition, Computer Science Press.

Transaction Management and Concurrency Control - Part 2
As we mentioned at the end of last week, three classic categories of algorithms for concurrency control
are:

* locks
* timestamping
* optimistic methods

Now, we will discuss some examples of these algorithms.

Locks
In locking (sometimes called resource locking), the idea is that we prevent some of the anomalies and
inconsistencies mentioned, due to lost updates, dirty reads, etc., by preventing multiple transactions
from having copies of the same data when that data may be about to be changed. You selectively
restrict concurrency when information may be updated -- transactions must obtain a lock for data
before they are permitted to use it (read it or write it), and the transaction then releases that lock when
it is done, so another transaction can obtain a lock on that information if it needs to.

(Note that, in this discussion, we are assuming implicit locks, locks placed automatically by the
DBMS, which is the norm for multi-user DBMS's that automatically initiate and enforce locking
procedures, managed by a lock manager. Explicit locks would be locks issued as a result of commands
made by the application program or query user to the DBMS, and we will not be discussing those here.)

Also note that lock granularity is another factor that can vary within a locking approach. Lock
granularity is how much (or how little) you can lock at once; that is, when you obtain lock, how much
is locked? A single cell within a row? a row? a column? a page? a table? the entire database?! Note the

CIS 315 - Reading Packet: "Transaction management, part 2" p. 2
Sharon Tuttle - Fall 2010

tradeoff between these different lock granularities:
* larger granularity is easier for the DBMS to administer, but creates more (potentially-

unnecessary) conflict, and could reduce potential "safe" concurrency;
* consider locking a row versus locking a whole table -- it is less likely that two transactions

will want to access the same row at the same time than that two transactions will want to
access different rows of the same table at the same time. If the lock granularity is one row,
then different transactions accessing different rows of that table -- that could safely proceed
concurrently -- will be able to do so, but if the lock granularity is the whole table, they will
not be permitted to, even though it would be "safe"; one will have to wait.

* smaller granularity is more difficult to administer (more details for the DBMS to keep track of and
check, and more overhead for the locks), but conflict is less frequent, and more potential "safe"
concurrency is possible.

There are a wide variety of locking algorithms and techniques; here we just mention a couple of the
most classic approaches, binary locks and shared/exclusive locks.

Binary locks
Binary locks have only 2 states, 1 and 0 (locked and unlocked). If something is locked by one
transaction, then no other transaction can use it, period, until that lock is released; if something is
unlocked, then any transaction can lock it for its use. ("Something", here, being whatever lock
granularity the DBMS is using.) Every database operation requires that the affected object be locked,
and as a rule a transaction must unlock the object after its termination. So, every transaction requires a
lock and unlock operation for every item to be accessed. (But, since we are assuming implicit locking,
remember, this will be automatically managed and scheduled by the DBMS.)

Notice that this is relatively simple for the DBMS -- when a binary lock is requested, the DBMS
determines if that something is already locked. If so, the requesting transaction has to wait; if not, the
requesting transaction obtains the lock. That is:
Transaction T wants a binary lock on item I. Does it get it?
* if item I is currently locked, transaction T has to wait;
* if item I is currently unlocked, transaction T obtains the binary lock.

It can require as little as one bit to store the lock's state (since its only two states are 1 or 0), so the
overhead is fairly low as well (although lock granularity will affect how much overhead is required).
However, binary locking is also relatively restrictive, limiting potential "safe" concurrency: for
example, concurrent reads are safe, but they will not be allowed under binary locking.

Shared/Exclusive locks (Read/Write locks)
Shared/exclusive locks (also called read/write locks) have 3 states: shared (or read) locked, exclusive
(or write) locked, and unlocked.

An exclusive lock (write lock) locks the item from any other concurrent access; the transaction with an
exclusive lock can both read and write the item, and no other transaction may do so while that item is
exclusive-locked. (A transaction must obtain an exclusive lock on something before updating it!)

CIS 315 - Reading Packet: "Transaction management, part 2" p. 3
Sharon Tuttle - Fall 2010

A shared lock (read lock) locks the item from being changed but not from being read; multiple
transactions are permitted to obtain a shared lock on the same item at the same time. Note the increase
in potential concurrency -- you permit concurrent reads when it is "safe" to do so (when the object does
not have an exclusive lock).

Notice that the algorithm, here, is a little more involved than for binary locking; consider:

* transaction T wants a shared/read lock on item I; does it get it?
* if item I is currently unlocked: YES, transaction T gets the shared lock;
* if item I is currently shared-locked: YES, transaction T gets the shared lock;
* if item I is currently exclusive-locked: NO, transaction T does not get the shared lock, and has

to wait until the exclusive lock is released.

* transaction T wants an exclusive/write lock on item I; does it get it?
* if item I is currently unlocked: YES, transaction T gets the exclusive lock;
* if item I is currently shared-locked: NO, transaction T does not get the exclusive lock, and has

to wait until (all the) shared lock(s) are released;
* if item I is currently exclusive-locked: NO, transaction T does not get the exclusive lock, and

has to wait until the exclusive lock is released.

Note that there is a little more overhead here -- you need at least 2 bits to represent the 3 possible lock
states of unlocked, shared-locked, and exclusive-locked, and that's before you handle keeping track of
how many transactions are currently have a shared lock on some item -- and the algorithm is a little
more involved, but there is also more potential "safe" concurrency, especially if reads are more frequent
than updates.

Two-phased locking
Note that locking helps to achieve isolation, but it does not, by itself, ensure serializability; that is,
using locks alone does not necessarily result in a serializable transaction schedule. Additional protocols
must be added to locking to ensure serializability.

One classic protocol for this is two-phased locking; serializability can be guaranteed if a two-phased
locking protocol is used:
* with this strategy, transactions may obtain locks as necessary, but once the first lock (of any kind)

is released, no other lock can be obtained.

* and, it is called two-phased because, when you enforce the above, it results in a transaction having
a growing phase, in which locks are obtained, and a shrinking phase, in which locks are released.

* Note that a more-restrictive (and easier-to-implement) variation of two-phased locking, used by
DB2 (and some other DBMS’s, also?), simply does not release any locks until a COMMIT or
ROLLBACK command is issued;
* so, no lock is released until the transaction has essentially been completely done, or

completely not done;

CIS 315 - Reading Packet: "Transaction management, part 2" p. 4
Sharon Tuttle - Fall 2010

* note that locks can thus be obtained throughout the transaction...the shrinking phase simply
does not begin until the transaction is complete or aborted.

Deadlocks
While locking helps solve inconsistency problems due to concurrent transactions, it introduces another
class of problems...deadlock conditions!

Consider the following scenario:

A B

pencil record

paper record

alloc

req alloc

req

* A wants to get some pencils, and if she can get them, then she wants to get paper

* B wants to get some paper, and if he can get them, then he wants to get pencils

So...

1. A requests and obtains a lock on paper;
2. B requests and obtains a lock on pencil;
3. A requests a lock on pencil, but cannot get it, and so has to wait;
4. B requests a lock on paper, but cannot get it, and so has to wait.

See the problem? A and B are each waiting for something that the other has locked; they are locked in a
so-called deadly embrace, they are in a state of deadlock.

Strategies for Deadlock Management
There are a number of strategies for deadlock management; those strategies include (but are not limited
to):
* timeouts
* detection
* prevention

Timeouts
If a transaction requests a lock and has to wait, it will only wait for a system-defined period of time.
[Connolly and Begg, p. 570] If a lock request times out, then the DBMS assumes that the transaction
MAY be deadlocked (although it might not be...!) and aborts and automatically restarts it. This strategy
is very simple, practical, and Connolly and Begg notes that it "is used by several commercial DBMS's".

CIS 315 - Reading Packet: "Transaction management, part 2" p. 5
Sharon Tuttle - Fall 2010

Detection
Detection strategies allow deadlock to occur, detect it, and then break it. That is, the DBMS
periodically tests the database for deadlocks (using, for example, a wait-for graph --- a dependencies
graph. For example, it can build a dependencies graph based on what transactions are waiting for what
items, and then look for cycles within that graph: any such cycle is a deadlock.). Once detected, the
DBMS breaks the deadlock by selecting one of the deadlocked transactions, aborting it, and restarting
it.

Prevention
Prevention strategies prevent deadlock from occurring at all. For example, a transaction requesting a
new lock will be aborted if there is a possibility that a deadlock can occur as a result of that lock
request -- (and remember that, based on two-phased locking, aborting a transaction causes all of its
locks obtained up to that point to be released). The aborted transaction is the rescheduled for execution.
Prevention works because it avoids the conditions that lead to deadlock; however, Connolly and Begg
claim that these strategies are more difficult and generally avoided.

Timestamping Algorithms
Timestamping algorithms are an alternative to locking approaches for scheduling concurrent
transactions; they are another, different class of algorithms for this.

In timestamping algorithms, a time stamp is assignment to each transaction when it is started. This
time stamp is not based on a 24-hour clock, however -- it has some very particular requirements:
* it must be global
* it must be unique for each transaction
* it must be monotonic (it must have the property of monotonicity -- the time stamp values must

always increase)

All database operations within the same transaction will be considered to have the transaction's time
stamp. The DBMS then ensures that conflicting operations are performed in time stamp order,
thereby ensuring serializability of the transactions. (Do you see why this assures serializability?
Because the concurrent transactions' effects thus must be the same as a serial order of those
transactions, the serial order of their happening to be executed in time stamp order!) What if a
transaction's conflicting operation would have to violate time stamp order to be done? Then that
transaction will be aborted, rescheduled, and assigned a new (and larger) time stamp when it is started
again.

Going into a bit more detail about this approach: with each data item Q, you associate two timestamp
values:
* W-ts(Q) - the largest time stamp of any transaction that executed write(Q) successfully
* R-ts(Q) - the largest time stamp of any transaction that executed read(Q) successfully

Assume that Ti is a transaction, and that TS(Ti) is the time stamp of transaction Ti. Then the
timestamp-ordering protocol ensures that any conflicting reads and writes are executed in timestamp
order (thus ensuring serializability):

CIS 315 - Reading Packet: "Transaction management, part 2" p. 6
Sharon Tuttle - Fall 2010

* If Ti issues read(Q):
* if TS(Ti) < W-ts(Q), then Ti needs to read a value of Q that was "already" overwritten by a

"later" transaction (according to timestamp ordering);
* the read(Q) will be rejected, and Ti will be aborted, rolled back, and restarted with a new

(larger) time stamp;

* else (if TS(Ti) >= W-ts(Q)), then it is "safe" to execute the read(Q);
* the read(Q) will be executed, and
* R-ts(Q) will be set to the maximum of R-ts(Q) and TS(Ti)

* (make sure that this is clear! You never want to set R-ts(Q) to be smaller than it was
before; it always needs to have the largest time-stamp of a "successful" read! If the
latest successful read(Q) has a smaller time stamp than the current R-ts(Q), then R-
ts(QP should be UNCHANGED.)

* (it is important to note the time stamp of the "latest" read, so that another write does
not get done "before" this read, in terms of time stamp ordering of conflicting
operations)

* If Ti issues write(Q):
* if TS(Ti) < R-ts(Q), then a "later" transaction has "already" read and used Q -- overwriting it

now would be bad (and would violate time stamp ordering), because there is no way now for
that "later" transaction to see the new value.
* the write(Q) will be rejected, and Ti will be aborted, rolled back, and restarted with a new

(larger) time stamp;

* else if TS(Ti) < W-ts(Q), then Ti is trying to write an "obsolete" value of Q (already
overwritten, according to time stamp ordering)
* the write(Q) will be rejected, and Ti will be aborted, rolled back, and restarted with a new

(larger) time stamp;

* else it IS safe to execute write(Q), so:
* the write(Q) is executed, and
* W-ts(Q) is updated to be TS(Ti)

Note that there is more overhead for this approach, the overhead for these timestamps! Each item
modified needs this R-ts and W-ts stored for it. But while livelock/starvation could occur, deadlock is
not an issue here, and it is an interesting alternative to locking algorithms for concurrency control.

Optimistic methods
This category of algorithms for concurrency control is based on the assumption that the majority of
database operations do not conflict. These algorithms do not require locking or time-stamping --
instead, a transaction is executed without restrictions until it is committed. That is, the transaction
moves through three phases:the read phase, the validation phase,and the write phase:

* read phase: the transaction reads the database, executes the needed computations, and makes the

CIS 315 - Reading Packet: "Transaction management, part 2" p. 7
Sharon Tuttle - Fall 2010

updates to a private copy of the database values;
* all updates are recorded in a temporary update file, accessible only by that one transaction

(and not any others running simultaneously)

* validation phase: the transaction is validated to assure that the changes made will not affect the
database's integrity or consistency;
* if the validation test succeeds? The transaction goes to the write phase.
* if it fails? The transaction is restarted, and its changes discarded (they were made in a

temporary update file, remember, and not to the actual database)

* write phase: the changes are permanently applied to the database.

This approach is acceptable for mostly-read or mostly-query database systems that require very few
update transactions.

We could take this discussion of concurrency control options much further, but this is where we will
stop. Hopefully it has given you an idea of some of the different means of providing concurrency
control and some of the issues involved.

	Sources:
	Transaction Management and Concurrency Control - Part 2
	Locks
	Binary locks
	Shared/Exclusive locks (Read/Write locks)
	Two-phased locking
	Deadlocks
	Strategies for Deadlock Management
	Timeouts
	Detection
	Prevention

	Timestamping Algorithms
	Optimistic methods

