
customized C++ tools for CS 131
last modified: 10-14-10 p. 1

customized C++ tools for CS 131
• NOTE #1: These tools are all currently available on nrs-labs.

• NOTE #2: For most of these tools, note that you should be in the directory you want to work in
before you call these tools. That is, use the cd (change directory) command to navigate to the
desired directory/folder BEFORE you use these. (Remember that cd .. lets you move "up" a
directory, and cd by itself takes you back to your home directory.)

• NOTE #3: This handout assumes that you have copied all of the tools below except for
~st10/131submit into your bin directory on nrs-labs. See Appendix 1 at the end of this
handout for how to do this, if you haven't yet.

• NOTE #4: The GNU C++ compiler, gcc/g++, includes the line number where it got confuzzled
near the beginning of its error messages (usually right after the file name). In nano, you can go
right to a particular line number within a file by typing ^W (where-is/search), then ^T (enter line
number), then typing the desired line number and then typing the ENTER key.

expr_play

USE WHEN:
...you want to experiment with C++ expressions (including function calls of already-written-and-
compiled C++ functions)

KNOWN QUIRKS:

• To test a function, you need to type in the names of all functions that that function calls (or that
functions it calls call...!)

• You may get odd results when using this with void functions (functions that do no return any
value) and with functions that print to the screen.

• The current version of this tool leaves the little C++ programs that it builds to do its work in your
current working directory -- I left them in deliberately (rather than deleting them) in case some of
you might find them to be interesting examples of tiny C++ programs. It is certainly safe to
remove these little files try_expr1.cpp, try_expr1, try_expr2.cpp, try_expr2,
etc. that it builds and leaves in your directory.

funct_play2

USE WHEN:
...you want to type in a C++ function from "scratch" using the design recipe.

KNOWN QUIRKS:

• It is a Perl script -- you cannot back up to a previous step. If you are a good ways in, I'd advise
simply finishing and then editing the resulting .cpp and .h files as desired. Then, you can use
funct_compile (see below) to compile and test the result.

• If you make a typo in a constant declaration and/or function header, you may need to edit both
the function's .h and .cpp files. Otherwise, you should usually just need to edit the function's
.cpp file.

• If you aren't a good ways in and you want to start completely over, type ^C (ctrl key and c key

customized C++ tools for CS 131
last modified: 10-14-10 p. 2

together) to just exit. Then you can simply run funct_play2 again.

• if a function will call other functions, be sure to type the *names* of those functions when
prompted.

• this also builds an examples-tester program from the examples you type in when prompted. This
program's file is the name of the function followed by _ck_expect.cpp -- that's what you should
edit if you make a typo in your examples. funct_compile will try to compile it if it isn't already
there.

funct_compile

USE WHEN:
...you simply want to recompile and test an already-written-and-compiled C++ function in the
current working directory. It will also try to compile the tester program for the function (function
name + _ck_expect.cpp) if it can.

KNOWN QUIRKS:

• if a function calls other functions, you need to type in the names of all such functions when
prompted for them.

~st10/131submit

USE WHEN:
...you want to submit homework files. You can simply submit all of the .cpp and .h files in the
current working directory by answering that question with a y (for yes) when prompted.

A "receipt" of your submission will be placed in a directory named submitted in the current
working directory. Remember to keep this "receipt" until the grades for a homework have been
posted to the course Moodle site.

KNOWN QUIRKS:

• IF you exit this before the end using ^C, YOUR FILES MIGHT NOT BE SUBMITTED -
beware!

• See the tool below, unziptar_all, if you'd like to see copies of the files you've submitted.

• Remember that I don't mind if you submit MULTIPLE VERSIONS of your homework files -
unless I hear from you otherwise, I simply grade the latest version turned in before the deadline.
This is to encourage you to play with your code!

unziptar_all

USE WHEN:
...you want to look at the files in your "receipt" created by 131submit. You want to cd into the
submitted directory, and THEN run this.

The zipped and tarred receipt file will be unzipped and un-tarred into a directory containing copies
of your submitted files. ls * is a quick-and-sleazy way to see the names of these files --- more */* is
a quick-and-sleazy way to page through the contents of the submitted files.

customized C++ tools for CS 131
last modified: 10-14-10 p. 3

KNOWN QUIRKS:

• Be sure to run this while in the submitted directory containing your zipped-and-tarred "receipt"
file.

APPENDIX 1 - installing these tools in your bin directory on nrs-labs
Most of these tools (except for ~st10/131submit) are easier to use if you have made copies of
them in your nrs-labs account, in a special directory named bin.

(Note that, if you don't want to do this, all should work just fine if you precede their names with
~st10/ -- that is,
~st10/expr_play

~st10/funct_play2

~st10/funct_compile

~st10/unziptar_all

...should all work fine from any directory on nrs-labs.)

Step 1:
ssh to, and log into your account on, nrs-labs.humboldt.edu

Step 2:
See if you have a bin directory in your home directory on nrs-labs, and create it if not.
[you@nrs-labs ~]$ ls bin

If the above command results in the message:
ls: bin: No such file or directory

...then create a bin directory (and protect it) with the commands:
[you@nrs-labs ~]$ mkdir bin

[you@nrs-labs ~]$ chmod 700 bin

Step 3:
Copy over these tools into your new bin directory using the following commands:
[you@nrs-labs ~]$ cp ~st10/expr_play bin

[you@nrs-labs ~]$ cp ~st10/funct_play2 bin

[you@nrs-labs ~]$ cp ~st10/funct_compile bin

[you@nrs-labs ~]$ cp ~st10/unziptar_all bin

Step 4:
You need to add some lines to a certain file, named .bashrc, in your home directory, so that nrs-
labs knows to look for these programs in your bin directory. First, open up this special file using
the text editor of your choice -- I'm using nano below:
[you@nrs-labs ~]$ nano .bashrc

Using the down-arrow key, move down to the bottom of this file .bashrc -- do not remove what

customized C++ tools for CS 131
last modified: 10-14-10 p. 4

is there, just type in or paste the following two lines:
User specific aliases and functions
PATH=$PATH:$HOME/bin:.

The first line is just a comment -- as long as you put the #, anything will work there. But the second
line needs to be typed in exactly as shown.

Save the modified .bashrc file (using ^O in nano), and then it is safe to exit the editor (using
^X in nano).

Either log out and ssh to nrs-labs again, OR type the following command, to execute this file
.bashrc for the first time (.bashrc will executed for you every time you ssh to nrs-labs from
now on):
[you@nrs-labs ~]$ source .bashrc

Step 5:
Now you should be able to run these commands in any of your directories on nrs-labs by simply
typing:
expr_play

funct_play2

funct_compile

unziptar_all

	expr_play
	USE WHEN:
	KNOWN QUIRKS:

	funct_play2
	USE WHEN:
	KNOWN QUIRKS:

	funct_compile
	USE WHEN:
	KNOWN QUIRKS:

	~st10/131submit
	USE WHEN:
	KNOWN QUIRKS:

	unziptar_all
	USE WHEN:
	KNOWN QUIRKS:

	APPENDIX 1 - installing these tools in your bin directory on nrs-labs
	Step 1:
	Step 2:
	Step 3:
	Step 4:
	Step 5:

