
CS 131 - Homework 5 p. 1

CS 131 - Homework 5

Deadline:
5:00 pm on Friday, October 1

How to submit:
When you are done with the following problems:
• save your resulting Definitions window contents in a file with the suffix .rkt

• transfer/save that file to a directory on nrs-labs (preferably in a folder/directory named
131hw5)

• use ssh to connect to nrs-labs

• cd to the folder/directory where you saved it (cd 131hw5 for example)

• use the ls command to make sure your .rkt file is really there

• use ~st10/131submit to submit it, with a homework number of 5

• make sure that ~st10/131submit shows that it submitted your homework .rkt file

Purpose:
Practice writing data definitions for structs and lists and writing templates for functions
involving structs and lists; practice designing functions involving lists (including lists of structs)

Important notes:
• Each student should work individually on this homework.

• You are expected to follow the Design Recipe for all functions that you write.

– Remember, you will receive significant credit for the signature, purpose, header, and
examples/check-expects portions of your functions.

– Typically you'll get at least half-credit for a correct signature, purpose, header, and
examples/check-expects, even if your function body is not correct

– (and, you'll lose at least half-credit if you omit these or do them poorly, even if your
function body is correct).

• Be especially careful to include at least one specific example/check-expect for each
"kind"/category of data, and (when appropriate) for boundaries between data. You can lose
credit for not doing so.

The Problems:

Problem 0
Start up DrRacket, setting the language to Beginning Student and adding the HTDP/2e versions
of the image and universe teachpacks by putting these lines at the beginning of your
Definitions window:
(require 2htdp/universe)

CS 131 - Homework 5 p. 2

(require 2htdp/image)

Put a blank line, and then type in a comment-line containing your name, followed by a comment-
line containing CS 131 - Homework 5, followed by a comment-line with no other text in it ---
that is,

; type in YOUR name
; CS 131 - Homework 5
;

Problem 1
Below what you typed in Problem 0 above, type the comment lines:
; Problem 1
;
Copy the data definition for number-list from the posted in-class examples and paste it into
your definitions window; also copy the template for a function uses-num-list that has a
number-list parameter num-list.

Design a function double-up that expects a list of numbers, and produces a new list whose
contents are each number from the original list multiplied by 2.

Problem 2
Skip a line, and write a comment noting that what follows are your expressions for:
; Problem 2
;
(Adapted from Stephen Bloch's section of Adelphi's CS 160, Spring 2002)

2 part a
Develop a data definition for a list-of-string, and develop a template for a function
uses-strings expecting a list-of-string parameter string-list.

2 part b
Design a function count-string that expects a string and a list of strings, and produces how
many times that string occurs in the list.

Problem 3
Skip a line, and write a comment noting that what follows are your expressions for:
; Problem 3
;

3 part a
Develop a data definition for a list-of-image, and develop a template for a function
uses-images expecting a list-of-image parameter image-list.

3 part b
Design a function scatter-images that expects a list of images, and produces a scene with

CS 131 - Homework 5 p. 3

those images centered in random locations in the scene. Make sure that each image's center is
within the scene.

(You can and should write at least one check-expect for this function -- but in place of the
other you should want to try to write, write an example call instead for that case.)

3 part c
Design a function filter-images that expects a maximum width, a maximum height, and a
list of images, and produces a list of just those images from the original list whose width and
height are strictly less than that given maximum width and maximum height.

Problem 4
Skip a line, and write a comment noting that what follows are your expressions for:
; Problem 4
;
(Adapted from Cal-Poly San Luis Obispo TeachScheme!/ReachJava! Workshop, June 2008)

Consider a store that sells music CD's. For each CD, this store wants to keep track of its title,
how many are in stock, and its category of music (such as "fuddy-duddy", "head-banging",
"country", "western", etc.)

4 part a
Write a data definition for a new struct type cd (including a define-struct expression and
the data definition comments, using the same style as demonstrated for h-flier).

Then, within a comment, write the template for a function which expects a cd parameter named
a-cd, using the same style as demonstrated for h-flier.

Then, within a comment, write the template for a function which produces a cd, using the same
style as demonstrated for h-flier.

Finally, write named constants to provide at least 3 examples of cd instances.

4 part b
Develop a data definition for a list-of-cd, and develop a template for a function
uses-cds expecting a list-of-cd parameter cd-list.

Then, write named constants to provide at least 2 examples of list-of-cd instances.

4 part c
Design a function total-stock that expects a list of CDs and produces the total quantity of
all of the CDs in that list.

4 part d
Design a function category-stock that expects a category of music and a list of CDs and
produces a list of all of the CDs from that list that are in that given category and have at least one
copy in stock.

CS 131 - Homework 5 p. 4

4 part e
Design a function category-titles that expects a category of music and a list of CDs and
produces a list of just the titles of all of the CDs from that list that are in that given category,
regardless of how many copies are in stock.

Problem 5:
Skip a line, and write a comment noting that what follows is your work for
; Problem 5

Consider your ball struct from Homework 5. Copy its data definition, its two templates, and all
of its associated functions into your Definitions window. (Note: you may also grab these from
the posted example solution if you prefer.)

5 part a
Develop a data definition for a list-of-ball, and develop a template for a function uses-
ball expecting a list-of-ball parameter ball-list.

5 part b
Develop a function draw-ball-list that expects a list of balls and produces a scene
depicting those ball instances.

5 part c
Develop a function move-ball-list that expects a list of balls and produces the list of balls
as they should be after the next clock tick.

(OPTIONAL: IF you wish, you may decide on some criteria, and move-ball-list can
produce just the list of balls that meet that criteria as they should be after the next clock tick.)

5 part d
Consider your affect-ball function (or the posted example version). What would happen if
you were to apply the action for each of those keystrokes to every ball in a list of balls?

Develop a function affect-ball-list that expects a list of balls and an instance of your
keystroke enumeration type, and produces the list of balls as they should be as a result of that
keystroke.

(OPTIONAL: IF you wish, you may define a new enumeration (or perhaps itemization) type, and
have some keystrokes that cause balls to be added to or removed from the list of balls as a result
of that keystroke.)

5 part e
Now bring this all together by using the design recipe to design a function main that expects an
initial list-of-ball instance, and starts up big-bang with at least:

• that initial list-of-ball instance,

• move-ball-list as its on-tick function (and whatever your desired choice of clock-
speed will be)

CS 131 - Homework 5 p. 5

• draw-ball-list as its on-draw function

• affect-ball-list as its on-key function

• (and you may have additional big-bang clauses if you like)

This kind of main function is hard to write specific tests for -- so, no check-expects are
required for this main function.

Finally, call main at least twice, with at least two different initial list-of-ball instances.

	Deadline:
	How to submit:
	Purpose:
	Important notes:
	The Problems:
	Problem 0
	Problem 1
	Problem 2
	2 part a
	2 part b

	Problem 3
	3 part a
	3 part b
	3 part c

	Problem 4
	4 part a
	4 part b
	4 part c
	4 part d
	4 part e

	Problem 5:
	5 part a
	5 part b
	5 part c
	5 part d
	5 part e

	

