
CS 131 - Homework 8 p. 1

CS 131 - Homework 8

Deadline:
5:00 pm on Friday, November 5

How to submit:
When you are done with the following problems:
• make sure that your current working directory on nrs-labs is the one where your C++ function

files for this homework are;

– for example, you might need:

cd 131hw8

...to change to you directory 131hw8, and

– then look at what files are there using ls

• then use ~st10/131submit to submit your .cpp and .h files for homework number 8

• make sure that ~st10/131submit shows that it submitted your .cpp and .h files for all
of your C++ functions and classes for this homework

Purpose:
To practice some more using C++ if statements, and to add zero-argument constructors, modifier
methods, and other methods to C++ classes

Important notes:
• Each student should work individually on this homework.

• You are still expected to follow the Design Recipe for all functions that you write.

– Remember, you will receive significant credit for the signature, purpose, header, and
examples portions of your functions.

– (but remember to use C++ types in signatures for C++ functions)

– (and, use == or < for your C++ example expressions -- for example,

my_funct(3) == 27

abs(my_dbl(4.7) - 100.43) < 0.01

...and note that these example tests are expressions rather than C++ statements, so do NOT
end them with a semicolon!)

– Typically you'll get at least half-credit for a correct signature, purpose, header, and
examples/, even if your function body is not correct

– (and, you'll lose at least half-credit if you omit these or do them poorly, even if your
function body is correct).

• Be especially careful to include at least one specific example/check-expect for each
"kind"/category of data, and (when appropriate) for boundaries between data. You can lose
credit for not doing so.

CS 131 - Homework 8 p. 2

• Remember that the C++ cmath library, included by the course C++ tools by default, includes
such goodies as an absolute value function (abs), sqrt, pow, and more.

The Problems:

Problem 0
Create, protect, and change to a directory 131hw8 -- type the following from your home
directory on nrs-labs:
[you1@nrs-labs ~]$ mkdir 131hw8

[you1@nrs-labs ~]$ chmod 700 131hw8

[you1@nrs-labs ~]$ cd 131hw8

(If you log out and come back later, remember to cd 131hw8 each time to return to this
directory!)

Problem 1
Consider: a character '+' cannot be used to actually add two numbers together in C++ -- but if
you were given that character, and two numbers, you could write logic that would see if the
character was '+', and if that is so, then add those numbers together.

So, for a function that will require use of a C++ branching statement: use funct_play2 to
develop a C++ function do_op that expects an operator expressed as a character and two
numbers, and produces the result of performing the specified operation on those two numbers.
These are further requirements for this function:

* it should produce a value of 0.0 if it is called with an operator character besides '+', '-', '*', or
'/'

* it should also produce a value of 0.0 if someone attempts to divide by 0

Submit your resulting do_op.cpp, do_op.h, and do_op_ck_expect.cpp files.

Problem 2
Now for some practice with other kinds of methods in classes: overloaded methods, zero-
argument constructors, modifier methods, and "other" methods.

Consider the rhino class from Homework 7.

We added an overloaded zero-argument constructor and a modifier method for each data field to
class boa during class. Now add an overloaded zero-argument constructor and a modifier
method for each data field to class rhino.

Also add an "other" method, calm, that:

* expects an integer giving how much you have calmed the calling rhino;

* has the side-effect of reducing the rhino's irritability index by the amount it has been calmed
EXCEPT not reducing it to less than 0 (don't allow the resulting irritability index to be less
than 0);

* produces/returns the new irritability value for the rhino.

CS 131 - Homework 8 p. 3

To test these new methods, modify rhino_test as follows:

* add a declaration using the new 0-argument constructor;

* create 3 bool variables to hold results of "sets" of tests (as is done in the posted example
boa_test.cpp);

* modify the current return statement to instead set one of these bool variables, and to
also test if the rhino created by the 0-argument constructor also has the data fields expected;

* call each of the modifiers at least once;

* set yet another bool variable to the result of testing if the rhino(s) modified by the
modifiers has the data field values now expected;

* call calm at least twice, on two different rhinos, calming one less than its current irritability
index, and calming the other more than its irritability index;

* set the 3rd bool variable to the result of testing if those rhinos' irritability indexes are as
they should be after the calm calls; and

* return the result of the logical and of the three bool variables.

Remember that you can use nano to modify these rhino files, and that you can use
funct_compile to recompile the modified rhino_test.

Submit your files rhino.h, rhino.cpp, rhino_test.cpp, and
rhino_test_ck_expect.cpp.

Problem 3
Now consider the taxi class from Homework 7.

Add an overloaded zero-argument constructor and a modifier method for each data field to class
taxi.

Also add an "other" method, more_bags_than, that:

* expects a taxi instance;

* produces/returns whether the calling taxi can hold more bags than the given taxi instance;

And, add an overloaded additional version of more_bags_than that:

* expects a number of bags;

* produces/returns whether the calling taxi can hold more than that given number of bags;

To test these new methods, modify taxi_test as follows:

* add a declaration using the new 0-argument constructor;

* create 3 bool variables to hold results of "sets" of tests (as is done in the posted example
boa_test.cpp);

* modify the current return statement to instead set one of these bool variables, and to
also test if the taxi created by the 0-argument constructor also has the data fields expected;

* call each of the modifiers at least once;

* set yet another bool variable to the result of testing if the taxi(s) modified by the modifiers
has the data field values now expected;

CS 131 - Homework 8 p. 4

* call each version of more_bags_than at least three times, with appropriate arguments,
comparing each call to the expected value for that call; set the 3rd bool variable to the result
of logical and'ing those 6 comparisons; and

* return the result of the logical and of the three bool variables.

Remember that you can use nano to modify these taxi files, and that you can use
funct_compile to recompile the modified taxi_test.

Submit your files taxi.h, taxi.cpp, taxi_test.cpp, and
taxi_test_ck_expect.cpp.

	Deadline:
	How to submit:
	Purpose:
	Important notes:
	The Problems:
	Problem 0
	Problem 1
	Problem 2
	Problem 3

