
CS 235 - Homework 5 p. 1 of 6

CS 235 - Homework 5

Deadline:
11:59 pm on Friday, October 8, 2021.

Purpose
To practice more exception-handling (both not involving, and involving, JTextField objects!), and
writing Java GUI applications that happen to include JTextField components as well as some
borders and numeric formatting.

How to submit:
Submit your .java files for this homework to the course Canvas site. (You'll be creating .class
files, also, but you do not submit those.)

Important notes:
• Note that Java applications with graphical user interfaces are expected to be structured as

demonstrated in the in-class example ButtonTest.java

– (that is, with an application class that creates and displays a JFrame subclass instance within the
event dispatch thread,

– and a JFrame subclass that creates and adds a JPanel subclass instance to itself in its
constructor, and

– a JPanel subclass whose constructor creates and adds appropriate components to itself)

• Because graphical user interfaces are involved, the CS50 IDE will NOT work on this homework's
problems. (Running in a browser, on the cloud, it cannot access your screen to display a JFrame.)

If you have a Terminal or bash shell, you can compile and run Java as you do from the CS50 IDE
Terminal.

AND -- I have verified that Java works -- compiles and runs -- from the Command Prompt on
vlab.humboldt.edu as it does from the CS50 IDE, also.

That is:

– Log into vlab.humboldt.edu

– In the search bar on the lower left, search for "command prompt", and click on the "Command
Prompt" app that comes up.

– Even though this is a Windows Command Prompt window and not a bash shell, commands such
as mkdir and cd and ls work here.

– I found that if I saved a .java file on the vlab desktop, then from the Command Prompt I could

CS 235 - Homework 5 p. 1 of 6

CS 235 - Homework 5

Deadline:
11:59 pm on Friday, October 8, 2021.

Purpose
To practice more exception-handling (both not involving, and involving, JTextField objects!), and
writing Java GUI applications that happen to include JTextField components as well as some
borders and numeric formatting.

How to submit:
Submit your .java files for this homework to the course Canvas site. (You'll be creating .class
files, also, but you do not submit those.)

Important notes:
• Note that Java applications with graphical user interfaces are expected to be structured as

demonstrated in the in-class example ButtonTest.java

– (that is, with an application class that creates and displays a JFrame subclass instance within the
event dispatch thread,

– and a JFrame subclass that creates and adds a JPanel subclass instance to itself in its
constructor, and

– a JPanel subclass whose constructor creates and adds appropriate components to itself)

• Because graphical user interfaces are involved, the CS50 IDE will NOT work on this homework's
problems. (Running in a browser, on the cloud, it cannot access your screen to display a JFrame.)

If you have a Terminal or bash shell, you can compile and run Java as you do from the CS50 IDE
Terminal.

AND -- I have verified that Java works -- compiles and runs -- from the Command Prompt on
vlab.humboldt.edu as it does from the CS50 IDE, also.

That is:

– Log into vlab.humboldt.edu

– In the search bar on the lower left, search for "command prompt", and click on the "Command
Prompt" app that comes up.

– Even though this is a Windows Command Prompt window and not a bash shell, commands such
as mkdir and cd and ls work here.

– I found that if I saved a .java file on the vlab desktop, then from the Command Prompt I could

CS 235 - Homework 5 p. 2 of 6

do the following:
C:\Users\st10> cd Desktop

C:\Users\st10\Desktop> javac MyGuiApp.java

C:\Users\st10\Desktop> java MyGuiApp

...and my application would compile and run!

– (But save your .java files to your Google Drive for safer, longer-term storage that can be more
easily accessed than the vlab Desktop!)

• Follow the class Java coding standards mentioned in class and demonstrated in posted in-class
examples -- some of these include:

– Follow the Java naming standards that have been discussed in class.

– Attempt "javadoc-style" comments for each Java class and method, in the same style as you see
in posted in-class examples.

– Everything inside a set of { } must be indented by AT LEAST 3 SPACES -- and the beginnings
of statements that are sequential should be indented the SAME NUMBER of spaces. (That is,
sequential statements should line up.)

– { and } should each go on their OWN line, with { lined up evenly with the preceding line, with
the { }'s contents indented by at least 3 spaces, and with } lined up with the opening {. That is,
handle the curly braces as you see in all posted class examples!

• ASK ME if any of these are unclear to you!

Problem 1
Before we get GUI, this is a small command-line application to practice some more with exception-
handling (and, if you choose, a bit more with numeric formatting).

Copy GameDie.java into your directory where you are putting this problem's Java files. (For our
purposes here, either the posted Lab 1 version or your Week 4 Lab Exercise version should work.) You
will be using a GameDie instance in this problem.

Write a command-line Java application ManyRolls that expects to be called with exactly two
command-line arguments: how many sides the die to be rolled should have, and how many times that
die is to be rolled.

It should then create a game die instance with that many sides and roll it the specified number of times,
outputting the result of each roll to the screen in a readable fashion of your choice.

• What if the user calls it without exactly 2 command line arguments?

– It should complain to system output with an appropriate complaining message of your choice,
and exit.

• What if either or both of the two command-line arguments are not positive integers?

– It should also complain to system output with an appropriate complaining message of your
choice, and exit.

CS 235 - Homework 5 p. 2 of 6

do the following:
C:\Users\st10> cd Desktop

C:\Users\st10\Desktop> javac MyGuiApp.java

C:\Users\st10\Desktop> java MyGuiApp

...and my application would compile and run!

– (But save your .java files to your Google Drive for safer, longer-term storage that can be more
easily accessed than the vlab Desktop!)

• Follow the class Java coding standards mentioned in class and demonstrated in posted in-class
examples -- some of these include:

– Follow the Java naming standards that have been discussed in class.

– Attempt "javadoc-style" comments for each Java class and method, in the same style as you see
in posted in-class examples.

– Everything inside a set of { } must be indented by AT LEAST 3 SPACES -- and the beginnings
of statements that are sequential should be indented the SAME NUMBER of spaces. (That is,
sequential statements should line up.)

– { and } should each go on their OWN line, with { lined up evenly with the preceding line, with
the { }'s contents indented by at least 3 spaces, and with } lined up with the opening {. That is,
handle the curly braces as you see in all posted class examples!

• ASK ME if any of these are unclear to you!

Problem 1
Before we get GUI, this is a small command-line application to practice some more with exception-
handling (and, if you choose, a bit more with numeric formatting).

Copy GameDie.java into your directory where you are putting this problem's Java files. (For our
purposes here, either the posted Lab 1 version or your Week 4 Lab Exercise version should work.) You
will be using a GameDie instance in this problem.

Write a command-line Java application ManyRolls that expects to be called with exactly two
command-line arguments: how many sides the die to be rolled should have, and how many times that
die is to be rolled.

It should then create a game die instance with that many sides and roll it the specified number of times,
outputting the result of each roll to the screen in a readable fashion of your choice.

• What if the user calls it without exactly 2 command line arguments?

– It should complain to system output with an appropriate complaining message of your choice,
and exit.

• What if either or both of the two command-line arguments are not positive integers?

– It should also complain to system output with an appropriate complaining message of your
choice, and exit.

CS 235 - Homework 5 p. 3 of 6

– (Hint: note that you are concerned about two issues here: is each an integer? AND is each
positive? How can you know if a command-line argument is not an integer? Once you know if it
is an integer, then you can check if it is positive...)

For example:
java ManyRolls 6 5

...should print to the screen something like:
Rolling a 6-sided die 5 times:
roll 1: 3
roll 2: 2
roll 3: 1
roll 4: 6
roll 5: 2

As another example,
java ManyRolls 20 3

...should print to the screen something like:
Rolling a 20-sided die 3 times:
roll 1: 13
roll 2: 2
roll 3: 7

But,
java ManyRolls

...should print to the screen something like:
Must call ManyRolls with exactly 2 integer arguments -- goodbye!

And, calls such as:
java ManyRolls 3 -7

...should print to the screen something like:
Must call ManyRolls with 2 positive integer arguments -- goodbye!

...as should calls such as:
java ManyRolls -4 7

java ManyRolls -8 -2

java ManyRolls 2.0 5

java ManyRolls moo oink

Submit your resulting ManyRolls.java .

Optional variation
Fun fact: for System.out.printf and String.format, "%vald" outputs an int value right-
justified in a field of size val (although it ignores this field size if it has more than val digits.)

CS 235 - Homework 5 p. 3 of 6

– (Hint: note that you are concerned about two issues here: is each an integer? AND is each
positive? How can you know if a command-line argument is not an integer? Once you know if it
is an integer, then you can check if it is positive...)

For example:
java ManyRolls 6 5

...should print to the screen something like:
Rolling a 6-sided die 5 times:
roll 1: 3
roll 2: 2
roll 3: 1
roll 4: 6
roll 5: 2

As another example,
java ManyRolls 20 3

...should print to the screen something like:
Rolling a 20-sided die 3 times:
roll 1: 13
roll 2: 2
roll 3: 7

But,
java ManyRolls

...should print to the screen something like:
Must call ManyRolls with exactly 2 integer arguments -- goodbye!

And, calls such as:
java ManyRolls 3 -7

...should print to the screen something like:
Must call ManyRolls with 2 positive integer arguments -- goodbye!

...as should calls such as:
java ManyRolls -4 7

java ManyRolls -8 -2

java ManyRolls 2.0 5

java ManyRolls moo oink

Submit your resulting ManyRolls.java .

Optional variation
Fun fact: for System.out.printf and String.format, "%vald" outputs an int value right-
justified in a field of size val (although it ignores this field size if it has more than val digits.)

CS 235 - Homework 5 p. 4 of 6

Use numeric formatting to "line up" your printed roll-results.

Optional variation 1: Do so assuming a reasonable maximum number of die-sides (such as 99) and a
maximum number of requested-rolls (such as 99).

Optional variation 2: Do so not assuming such a maximum (and determining the possible maximum
field-width dynamically).

For example:
java ManyRolls 20 10

...could print to the screen something like:
Rolling a 20-sided die 10 times:
roll 1: 1
roll 2: 7
roll 3: 14
roll 4: 19
roll 5: 1
roll 6: 13
roll 7: 8
roll 8: 20
roll 9: 8
roll 10: 13

Problem 2
Consider Mult2.java from the Week 6 Lab Exercise. What if it supported more than just
multiplication?

Decide on at least one additional operation besides multiplication that you'd like your application to
compute. (Addition is fine, as is subtraction or division or average or any operation of interest that can
be done to two double values.)

Then, for this homework problem, copy your Week 6 Lab Exercise version of Mult2.java into a file
ComputeMore.java, and change the class names accordingly. Then:

• ADD a third @author line with "adapted by <your name>" to its javadoc comment.

• Change the @version comment appropriately.

• Change the "Mult2" frame title to say "ComputeMore".

• Change the "Mult2" label to say "ComputeMore, adapted by <your name here>"

• Change the JLabel you added containing your and your Week 6 Lab Exercise partner's name(s) to
contain just your name. (Note that your partner(s) will still be acknowledged in the 2nd @author
comment for this class, which you are leaving in this version.)

• Change the instructions label's text appropriately to "fit" the new functionality you decided upon

• Add an additional button for each additional operation you decide to add

– (you may change the label on the "Multiply Values" button, as long as its meaning is still clear,

CS 235 - Homework 5 p. 4 of 6

Use numeric formatting to "line up" your printed roll-results.

Optional variation 1: Do so assuming a reasonable maximum number of die-sides (such as 99) and a
maximum number of requested-rolls (such as 99).

Optional variation 2: Do so not assuming such a maximum (and determining the possible maximum
field-width dynamically).

For example:
java ManyRolls 20 10

...could print to the screen something like:
Rolling a 20-sided die 10 times:
roll 1: 1
roll 2: 7
roll 3: 14
roll 4: 19
roll 5: 1
roll 6: 13
roll 7: 8
roll 8: 20
roll 9: 8
roll 10: 13

Problem 2
Consider Mult2.java from the Week 6 Lab Exercise. What if it supported more than just
multiplication?

Decide on at least one additional operation besides multiplication that you'd like your application to
compute. (Addition is fine, as is subtraction or division or average or any operation of interest that can
be done to two double values.)

Then, for this homework problem, copy your Week 6 Lab Exercise version of Mult2.java into a file
ComputeMore.java, and change the class names accordingly. Then:

• ADD a third @author line with "adapted by <your name>" to its javadoc comment.

• Change the @version comment appropriately.

• Change the "Mult2" frame title to say "ComputeMore".

• Change the "Mult2" label to say "ComputeMore, adapted by <your name here>"

• Change the JLabel you added containing your and your Week 6 Lab Exercise partner's name(s) to
contain just your name. (Note that your partner(s) will still be acknowledged in the 2nd @author
comment for this class, which you are leaving in this version.)

• Change the instructions label's text appropriately to "fit" the new functionality you decided upon

• Add an additional button for each additional operation you decide to add

– (you may change the label on the "Multiply Values" button, as long as its meaning is still clear,

CS 235 - Homework 5 p. 5 of 6

especially if that helps with layout or just allows it to look better with your new button(s))

• Right now, there's a label next to the textfield holding the multiplied result that says "And the
product is:". That isn't going to work with two or more operations -- modify the logic so that the text
for this label changes to describe the operation that was done.

– (e.g., when the multiply button is clicked, it says "And the product is:" -- and if your other button
was, say, an add button, when clicked that label would change to "And the sum is:")

• Change the size of the ComputeMoreFrame as desired (as long as all of the components are
visible).

• As long as the results are reasonably visible and readable, the colors used are up to you.

• Keep the Week 6 Lab Exercise requirement that at least two components use a font or fonts visibly
and obviously different than the default font --

but otherwise, as long as the results are reasonably visible and readable, you get to choose the fonts
used.

• Make sure to also keep these Week 6 Lab Exercise requirements in your version of
ComputeMore.java:

– All the textfields should be right-aligned.

– At least two components should be given noticeable, visible border of your choice.

– try-catch blocks are appropriately used so that, if the user enters a value that cannot be
parsed as a double, a JOptionPane will be displayed letting the user know that a number
must be entered, and all 3 textfields will be set to contain 0.

– The JTextField displaying the computations' results should be non-editable.

– The computations' results' display should be formatted to precisely 3 fractional places.

Submit your resulting ComputeMore.java.

Problem 3
Consider: the class Color in package java.awt includes a constructor that expects three integers,
representing a red value, a green value, and a blue value, each an integer in [0, 255], and produces a
new Color instance with that RGB value.

For example, you can try out the following in jshell:
import java.awt.*;
import javax.swing.*;
Color custom = new Color(13, 188, 233);

JLabel playLabel = new JLabel("LOOK AT MEEEE");
playLabel.setForeground(custom);

JPanel playPanel = new JPanel();
playPanel.add(playLabel);

CS 235 - Homework 5 p. 5 of 6

especially if that helps with layout or just allows it to look better with your new button(s))

• Right now, there's a label next to the textfield holding the multiplied result that says "And the
product is:". That isn't going to work with two or more operations -- modify the logic so that the text
for this label changes to describe the operation that was done.

– (e.g., when the multiply button is clicked, it says "And the product is:" -- and if your other button
was, say, an add button, when clicked that label would change to "And the sum is:")

• Change the size of the ComputeMoreFrame as desired (as long as all of the components are
visible).

• As long as the results are reasonably visible and readable, the colors used are up to you.

• Keep the Week 6 Lab Exercise requirement that at least two components use a font or fonts visibly
and obviously different than the default font --

but otherwise, as long as the results are reasonably visible and readable, you get to choose the fonts
used.

• Make sure to also keep these Week 6 Lab Exercise requirements in your version of
ComputeMore.java:

– All the textfields should be right-aligned.

– At least two components should be given noticeable, visible border of your choice.

– try-catch blocks are appropriately used so that, if the user enters a value that cannot be
parsed as a double, a JOptionPane will be displayed letting the user know that a number
must be entered, and all 3 textfields will be set to contain 0.

– The JTextField displaying the computations' results should be non-editable.

– The computations' results' display should be formatted to precisely 3 fractional places.

Submit your resulting ComputeMore.java.

Problem 3
Consider: the class Color in package java.awt includes a constructor that expects three integers,
representing a red value, a green value, and a blue value, each an integer in [0, 255], and produces a
new Color instance with that RGB value.

For example, you can try out the following in jshell:
import java.awt.*;
import javax.swing.*;
Color custom = new Color(13, 188, 233);

JLabel playLabel = new JLabel("LOOK AT MEEEE");
playLabel.setForeground(custom);

JPanel playPanel = new JPanel();
playPanel.add(playLabel);

CS 235 - Homework 5 p. 6 of 6

JFrame playFrame = new JFrame();
playFrame.add(playPanel);
playFrame.setSize(200, 50);
playFrame.setVisible(true);

But, that's a clunky way to play with and see the colors you'd get with different red, green, and blue
values -- here, you'll write a (first version of a) tool that makes color experiments more convenient.

Write a Java GUI application ColorPlay1.java, that allows one to enter different combinations of
red, green, and blue values, and see the resulting color. These are the minimum requirements:

• Somewhere within it should be a JLabel including your name.

• Give at least one component a noticeable, visible border of your choice.

• It should include 3 JTextField instances whose contents will be right-justified, with
accompanying JLabel instance(s) requesting that the user enter desired red, green, and blue values
into these textfields. (You get to choose the relative orientation of these textfields and label(s).)

– You may decide what the initial contents of these textfields should be.

• It should include a JButton with appropriate text on it, which, when pressed, will cause the color
of the application panel's background to be changed to the color corresponding to the red, green, and
blue values currently entered in the 3 textfields.

– What if the user enters something that is not an integer in one or more of the textfields?

Then an appropriate JOptionPane dialog should appear letting the user know they've entered
at least one "bad" non-integer value, and the textfields' contents should be reset to some "safe"
default value of your choice.

– What if the user enters all integers, BUT enters an integer not in [0, 255] in one or more of the
textfields?

Then another appropriate JOptionPane dialog should appear letting the user know they've
entered a "bad" out-of-range integer value, and the textfields' contents should be reset to some
"safe" default value of your choice.

– (notice that, in either "bad" case above, you are changing all 3 textfields' contents, which is
admittedly simpler. OPTIONALLY, you may choose to JUST change each "bad" textfield(s)'s
contents.)

• Resize, kluge as needed to get a reasonable/readable looking result. Fonts, and other colors besides
the panel's background color, are your choice, as long as the result is readable.

Submit your resulting ColorPlay1.java.

CS 235 - Homework 5 p. 6 of 6

JFrame playFrame = new JFrame();
playFrame.add(playPanel);
playFrame.setSize(200, 50);
playFrame.setVisible(true);

But, that's a clunky way to play with and see the colors you'd get with different red, green, and blue
values -- here, you'll write a (first version of a) tool that makes color experiments more convenient.

Write a Java GUI application ColorPlay1.java, that allows one to enter different combinations of
red, green, and blue values, and see the resulting color. These are the minimum requirements:

• Somewhere within it should be a JLabel including your name.

• Give at least one component a noticeable, visible border of your choice.

• It should include 3 JTextField instances whose contents will be right-justified, with
accompanying JLabel instance(s) requesting that the user enter desired red, green, and blue values
into these textfields. (You get to choose the relative orientation of these textfields and label(s).)

– You may decide what the initial contents of these textfields should be.

• It should include a JButton with appropriate text on it, which, when pressed, will cause the color
of the application panel's background to be changed to the color corresponding to the red, green, and
blue values currently entered in the 3 textfields.

– What if the user enters something that is not an integer in one or more of the textfields?

Then an appropriate JOptionPane dialog should appear letting the user know they've entered
at least one "bad" non-integer value, and the textfields' contents should be reset to some "safe"
default value of your choice.

– What if the user enters all integers, BUT enters an integer not in [0, 255] in one or more of the
textfields?

Then another appropriate JOptionPane dialog should appear letting the user know they've
entered a "bad" out-of-range integer value, and the textfields' contents should be reset to some
"safe" default value of your choice.

– (notice that, in either "bad" case above, you are changing all 3 textfields' contents, which is
admittedly simpler. OPTIONALLY, you may choose to JUST change each "bad" textfield(s)'s
contents.)

• Resize, kluge as needed to get a reasonable/readable looking result. Fonts, and other colors besides
the panel's background color, are your choice, as long as the result is readable.

Submit your resulting ColorPlay1.java.

	Deadline:
	Purpose
	How to submit:
	Important notes:
	Problem 1
	Optional variation

	Problem 2
	Problem 3

