
CS 235 - Homework 6 p. 1

CS 235 - Homework 6

Deadline:
11:59 pm on Friday, October 22, 2021.

Purpose
To check your understanding of, and to practice using, Java's FlowLayout, BorderLayout, and
GridLayout layout managers.

How to submit:
You complete Problem 1 on the course Canvas site (short-answer questions related to Java's basic layout
managers).

For Problems 2 onward, you will create the specified .java files, and then submit those to the course
Canvas site. (You'll be creating .class files, also, but you do not submit those.)

Important notes:
• Note that Java applications with graphical user interfaces are expected to be structured as demonstrated

in the in-class example ButtonTest.java

– (that is, with an application class that creates and displays a JFrame subclass instance within the
event dispatch thread,

– and a JFrame subclass that creates and adds a JPanel subclass instance to itself in its constructor,
and

– a JPanel subclass whose constructor creates and adds appropriate components to itself)

• Because graphical user interfaces are involved, the CS50 IDE will NOT work on this homework's
problems. (Running in a browser, on the cloud, it cannot access your screen to display a JFrame.)

If you have a Terminal or bash shell, you can compile and run Java as you do from the CS50 IDE
Terminal.

AND -- I have verified that Java works -- compiles and runs -- from the Command Prompt on
vlab.humboldt.edu as it does from the CS50 IDE, also.

That is:

– Log into vlab.humboldt.edu

– In the search bar on the lower left, search for "command prompt", and click on the "Command
Prompt" app that comes up.

– Even though this is a Windows Command Prompt window and not a bash shell, commands such as
mkdir and cd and ls work here.

– I found that if I saved a .java file on the vlab desktop, then from the Command Prompt I could do

CS 235 - Homework 6 p. 1

CS 235 - Homework 6

Deadline:
11:59 pm on Friday, October 22, 2021.

Purpose
To check your understanding of, and to practice using, Java's FlowLayout, BorderLayout, and
GridLayout layout managers.

How to submit:
You complete Problem 1 on the course Canvas site (short-answer questions related to Java's basic layout
managers).

For Problems 2 onward, you will create the specified .java files, and then submit those to the course
Canvas site. (You'll be creating .class files, also, but you do not submit those.)

Important notes:
• Note that Java applications with graphical user interfaces are expected to be structured as demonstrated

in the in-class example ButtonTest.java

– (that is, with an application class that creates and displays a JFrame subclass instance within the
event dispatch thread,

– and a JFrame subclass that creates and adds a JPanel subclass instance to itself in its constructor,
and

– a JPanel subclass whose constructor creates and adds appropriate components to itself)

• Because graphical user interfaces are involved, the CS50 IDE will NOT work on this homework's
problems. (Running in a browser, on the cloud, it cannot access your screen to display a JFrame.)

If you have a Terminal or bash shell, you can compile and run Java as you do from the CS50 IDE
Terminal.

AND -- I have verified that Java works -- compiles and runs -- from the Command Prompt on
vlab.humboldt.edu as it does from the CS50 IDE, also.

That is:

– Log into vlab.humboldt.edu

– In the search bar on the lower left, search for "command prompt", and click on the "Command
Prompt" app that comes up.

– Even though this is a Windows Command Prompt window and not a bash shell, commands such as
mkdir and cd and ls work here.

– I found that if I saved a .java file on the vlab desktop, then from the Command Prompt I could do

CS 235 - Homework 6 p. 2

the following:
C:\Users\st10> cd Desktop

C:\Users\st10\Desktop> javac MyGuiApp.java

C:\Users\st10\Desktop> java MyGuiApp

...and my application would compile and run!

– (But save your .java files to your Google Drive for safer, longer-term storage that can be more
easily accessed than the vlab Desktop!)

• Follow the class Java coding standards mentioned in class and demonstrated in posted in-class examples
-- some of these include:

– Follow the Java naming standards that have been discussed in class.

– Attempt "javadoc-style" comments for each Java class and method, in the same style as you see in
posted in-class examples.

– Everything inside a set of { } must be indented by AT LEAST 3 SPACES -- and the beginnings of
statements that are sequential should be indented the SAME NUMBER of spaces. (That is,
sequential statements should line up.)

– { and } should each go on their OWN line, with { lined up evenly with the preceding line, with the {
}'s contents indented by at least 3 spaces, and with } lined up with the opening {. That is, handle the
curly braces as you see in all posted class examples!

• ASK ME if any of these are unclear to you!

Problem 1 - 21 points
Problem 1 is correctly answering the "HW 6 - Problem 1 - short-answer questions on basic layout
managers" on the course Canvas site.

Problem 2
Consider ColorPlay1.java from Homework 5 - Problem 3 – remember that there is also a posted
example solution, available from the course Canvas site, under " Selected solutions - Homeworks...", if
you prefer.

Modify either your Homework 5 solution or the posted solution into a file ColorPlay2.java, whose
modified classes meet the following specifications:

• ColorPlay2Panel should now use BorderLayout, and in its northern region should be a sub-
panel using FlowLayout whose contents include the JLabel including your name (although it may
also include more that just that JLabel).

• ColorPlay2Panel's center region should somehow include a sub-panel using GridLayout, with
the grid arranged as you choose but with at least 6 cells, containing the red-green-blue labels and
textfields.

– (That is, ColorPlay2Panel's center region might be filled with this sub-panel using
GridLayout, or it might contain a sub-panel using, for example, BorderLayout whose center

CS 235 - Homework 6 p. 2

the following:
C:\Users\st10> cd Desktop

C:\Users\st10\Desktop> javac MyGuiApp.java

C:\Users\st10\Desktop> java MyGuiApp

...and my application would compile and run!

– (But save your .java files to your Google Drive for safer, longer-term storage that can be more
easily accessed than the vlab Desktop!)

• Follow the class Java coding standards mentioned in class and demonstrated in posted in-class examples
-- some of these include:

– Follow the Java naming standards that have been discussed in class.

– Attempt "javadoc-style" comments for each Java class and method, in the same style as you see in
posted in-class examples.

– Everything inside a set of { } must be indented by AT LEAST 3 SPACES -- and the beginnings of
statements that are sequential should be indented the SAME NUMBER of spaces. (That is,
sequential statements should line up.)

– { and } should each go on their OWN line, with { lined up evenly with the preceding line, with the {
}'s contents indented by at least 3 spaces, and with } lined up with the opening {. That is, handle the
curly braces as you see in all posted class examples!

• ASK ME if any of these are unclear to you!

Problem 1 - 21 points
Problem 1 is correctly answering the "HW 6 - Problem 1 - short-answer questions on basic layout
managers" on the course Canvas site.

Problem 2
Consider ColorPlay1.java from Homework 5 - Problem 3 – remember that there is also a posted
example solution, available from the course Canvas site, under " Selected solutions - Homeworks...", if
you prefer.

Modify either your Homework 5 solution or the posted solution into a file ColorPlay2.java, whose
modified classes meet the following specifications:

• ColorPlay2Panel should now use BorderLayout, and in its northern region should be a sub-
panel using FlowLayout whose contents include the JLabel including your name (although it may
also include more that just that JLabel).

• ColorPlay2Panel's center region should somehow include a sub-panel using GridLayout, with
the grid arranged as you choose but with at least 6 cells, containing the red-green-blue labels and
textfields.

– (That is, ColorPlay2Panel's center region might be filled with this sub-panel using
GridLayout, or it might contain a sub-panel using, for example, BorderLayout whose center

CS 235 - Homework 6 p. 3

region happens to include the required sub-panel using GridLayout...)

• ColorPlay2Panel's south region should contain a sub-panel (a button-panel) that uses
FlowLayout whose contents include the button that is pressed to set the background color to the
currently-entered red, green, and blue values.

• Decide which panel's or panels' background color will be set to the specified RGB values -- as long as it
is clear and obvious that something has been set to a color based on the current red, green, and blue
values when the button is clicked, that should meet the specifications.

– (But please ask me if you have any concerns about this requirement, or any of the others for that
matter!)

• (If you would like to put anything in the east and west regions -- such as "dummy" labels of blanks for
spacing -- that is fine.)

• Colors (besides that being set by the user-specified red, green, and blue values) and font-sizes and font-
styles are up to you, as long as the result is readable and attractive.

Submit your resulting ColorPlay2.java.

Problem 3
Copy GameDie.java into your directory where you are putting this problem's Java files. You will be
using an array of GameDie instances in this problem. (This can be the Week 1 Lab's version of
GameDie, or your Week 4 Lab Exercise version of GameDie.)

You made a GUI application, DieRoller, that rolled a single die in Homework 4 - Problem 3. But, now
that we have GridLayout and BorderLayout available, writing a version that allows you to roll
multiple dice should now be more reasonable (from a layout point of view).

Decide: would you like to roll 2 dice? 3? 4? 5? Choose, make this size a named constant, and create a
DiceRoller application that uses an array of GameDie of that size, and also meets the following
specifications:

• Decide if you want to use a named constant for the number of sides per die, or if you want to somehow
allow the user to specify this (via, for example, an appropriate JOptionPane).

• The north should contain a sub-panel with a centered, descriptive label including your name.

• The center should contain a sub-panel with a two-row grid such that the top row contains buttons to roll
their respective die, and the second row contains labels and/or output textfields - your choice - giving
the value of the latest roll of that die

– (Whether there are any sub-panels within this sub-panel is up to you.)

• The south should contain a sub-panel that has, centered, the sum of the latest rolls of all of the dice,
using a label and/or output textfield, your choice.

– (Remember, you have an array of GameDie instances -- iterating through it and adding all of their
current top values should be quite reasonable.)

• Use at least one visible border somewhere in your application

• (If you would like to put anything in the east and west regions -- such as "dummy" labels of blanks for

CS 235 - Homework 6 p. 3

region happens to include the required sub-panel using GridLayout...)

• ColorPlay2Panel's south region should contain a sub-panel (a button-panel) that uses
FlowLayout whose contents include the button that is pressed to set the background color to the
currently-entered red, green, and blue values.

• Decide which panel's or panels' background color will be set to the specified RGB values -- as long as it
is clear and obvious that something has been set to a color based on the current red, green, and blue
values when the button is clicked, that should meet the specifications.

– (But please ask me if you have any concerns about this requirement, or any of the others for that
matter!)

• (If you would like to put anything in the east and west regions -- such as "dummy" labels of blanks for
spacing -- that is fine.)

• Colors (besides that being set by the user-specified red, green, and blue values) and font-sizes and font-
styles are up to you, as long as the result is readable and attractive.

Submit your resulting ColorPlay2.java.

Problem 3
Copy GameDie.java into your directory where you are putting this problem's Java files. You will be
using an array of GameDie instances in this problem. (This can be the Week 1 Lab's version of
GameDie, or your Week 4 Lab Exercise version of GameDie.)

You made a GUI application, DieRoller, that rolled a single die in Homework 4 - Problem 3. But, now
that we have GridLayout and BorderLayout available, writing a version that allows you to roll
multiple dice should now be more reasonable (from a layout point of view).

Decide: would you like to roll 2 dice? 3? 4? 5? Choose, make this size a named constant, and create a
DiceRoller application that uses an array of GameDie of that size, and also meets the following
specifications:

• Decide if you want to use a named constant for the number of sides per die, or if you want to somehow
allow the user to specify this (via, for example, an appropriate JOptionPane).

• The north should contain a sub-panel with a centered, descriptive label including your name.

• The center should contain a sub-panel with a two-row grid such that the top row contains buttons to roll
their respective die, and the second row contains labels and/or output textfields - your choice - giving
the value of the latest roll of that die

– (Whether there are any sub-panels within this sub-panel is up to you.)

• The south should contain a sub-panel that has, centered, the sum of the latest rolls of all of the dice,
using a label and/or output textfield, your choice.

– (Remember, you have an array of GameDie instances -- iterating through it and adding all of their
current top values should be quite reasonable.)

• Use at least one visible border somewhere in your application

• (If you would like to put anything in the east and west regions -- such as "dummy" labels of blanks for

CS 235 - Homework 6 p. 4

spacing -- that is fine.)

• Colors and font-sizes and font-styles are up to you, as long as the result is readable and attractive.

Submit your resulting DiceRoller.java.

Problem 4
During the Week 7 Lecture, it was briefly mentioned that, within an actionPerformed method, you
could grab the text associated with the button that was clicked using the actionPerformed method's
ActionEvent parameter's getActionCommand method. And, this is demonstrated in the posted
LayoutTrio1.java example.

But, you can grab more than the action command of the action event -- you also can actually grab a
reference to the SOURCE of an event by using that ActionEvent parameter.

The ActionEvent class includes a method getSource, which returns a value of type Object, a
reference to the component that was acted upon (here, a reference to the button that was clicked).

But what if you want to call JButton methods on the Object returned? Well, if you know the Object
is also of type JButton, you can cast it to JButton.

That is, in LayoutTrio1.java, in inner class NumButtonAction, I could rewrite its
actionPerformed method using this as follows:
 public void actionPerformed(ActionEvent event)
 {
 // grabbing the SOURCE of this event -- here, a button!
 // (getSource() returns an Object -- I *know* it
 // is a JButton, here, so it is safe for me to
 // cast this returned result to a JButton)

 JButton clickedButton = (JButton) event.getSource();

 int currButtonVal =
 Integer.parseInt(clickedButton.getText());

 runningTotal += currButtonVal;
 resultsField.setText(Integer.toString(runningTotal));
 }

And -- as you can see above, you can get the text on the top of a JButton using its getText method.

Interestingly enough, you can also CHANGE the text on a JButton using its setText method! So,
with that noted, on to this problem!

Create a simple tic-tac-toe game BOARD program, whose classes are in a file TicTac.java. Since this
problem is more about layout practice than about game logic, please note that it is NOT required to be
very "smart"! It JUST needs to meet the following specifications:

• In the north, it needs to have a label stating "Tic-Tac-Toe - by <your name here>" (You can
choose if you want this label on a sub-panel or not.)

• In the south, it needs to have a JPanel using FlowLayout, containing a "Clear" button. (So, this

CS 235 - Homework 6 p. 4

spacing -- that is fine.)

• Colors and font-sizes and font-styles are up to you, as long as the result is readable and attractive.

Submit your resulting DiceRoller.java.

Problem 4
During the Week 7 Lecture, it was briefly mentioned that, within an actionPerformed method, you
could grab the text associated with the button that was clicked using the actionPerformed method's
ActionEvent parameter's getActionCommand method. And, this is demonstrated in the posted
LayoutTrio1.java example.

But, you can grab more than the action command of the action event -- you also can actually grab a
reference to the SOURCE of an event by using that ActionEvent parameter.

The ActionEvent class includes a method getSource, which returns a value of type Object, a
reference to the component that was acted upon (here, a reference to the button that was clicked).

But what if you want to call JButton methods on the Object returned? Well, if you know the Object
is also of type JButton, you can cast it to JButton.

That is, in LayoutTrio1.java, in inner class NumButtonAction, I could rewrite its
actionPerformed method using this as follows:
 public void actionPerformed(ActionEvent event)
 {
 // grabbing the SOURCE of this event -- here, a button!
 // (getSource() returns an Object -- I *know* it
 // is a JButton, here, so it is safe for me to
 // cast this returned result to a JButton)

 JButton clickedButton = (JButton) event.getSource();

 int currButtonVal =
 Integer.parseInt(clickedButton.getText());

 runningTotal += currButtonVal;
 resultsField.setText(Integer.toString(runningTotal));
 }

And -- as you can see above, you can get the text on the top of a JButton using its getText method.

Interestingly enough, you can also CHANGE the text on a JButton using its setText method! So,
with that noted, on to this problem!

Create a simple tic-tac-toe game BOARD program, whose classes are in a file TicTac.java. Since this
problem is more about layout practice than about game logic, please note that it is NOT required to be
very "smart"! It JUST needs to meet the following specifications:

• In the north, it needs to have a label stating "Tic-Tac-Toe - by <your name here>" (You can
choose if you want this label on a sub-panel or not.)

• In the south, it needs to have a JPanel using FlowLayout, containing a "Clear" button. (So, this

CS 235 - Homework 6 p. 5

button will be centered within a South sub-panel, rather than taking up the entire panel)

• In the center, it needs a JPanel containing a 3x3 grid of buttons using GridLayout. Let's call these
the game buttons.

• When the application starts, all of the game buttons are blank.

– If you click on a blank game button, it should change to show a large X. If you click on a game
button with an X, it should change to show a large O. If you click on a game button with an O, it
should change to be blank.

• If you click on the Clear button, all of the game buttons should change to be blank.

• Do NOT use a 9-way if-else-if (or 9 if statements, either...!) to handle the 9 buttons within your
code!!

– Use an array of JButton objects!!

• Use at least one visible border somewhere in your application

• (If you would like to put anything in the east and west regions -- such as "dummy" labels of blanks for
spacing -- that is fine.)

• Colors and font-sizes and font-styles are up to you, as long as the result is readable and attractive. Make
sure the X's and O's on the buttons are large and easy to see!

OPTIONALLY:

• IF you'd like, you can add more sophisticated logic to the above, IF you still meet the above
requirements AND CLEARLY DOCUMENT those logic enhancements.

Submit your resulting TicTac.java.

CS 235 - Homework 6 p. 5

button will be centered within a South sub-panel, rather than taking up the entire panel)

• In the center, it needs a JPanel containing a 3x3 grid of buttons using GridLayout. Let's call these
the game buttons.

• When the application starts, all of the game buttons are blank.

– If you click on a blank game button, it should change to show a large X. If you click on a game
button with an X, it should change to show a large O. If you click on a game button with an O, it
should change to be blank.

• If you click on the Clear button, all of the game buttons should change to be blank.

• Do NOT use a 9-way if-else-if (or 9 if statements, either...!) to handle the 9 buttons within your
code!!

– Use an array of JButton objects!!

• Use at least one visible border somewhere in your application

• (If you would like to put anything in the east and west regions -- such as "dummy" labels of blanks for
spacing -- that is fine.)

• Colors and font-sizes and font-styles are up to you, as long as the result is readable and attractive. Make
sure the X's and O's on the buttons are large and easy to see!

OPTIONALLY:

• IF you'd like, you can add more sophisticated logic to the above, IF you still meet the above
requirements AND CLEARLY DOCUMENT those logic enhancements.

Submit your resulting TicTac.java.

	Deadline:
	Purpose
	How to submit:
	Important notes:
	Problem 1 - 21 points
	Problem 2
	Problem 3
	Problem 4

