
CS 235 - Homework 8 p. 1

CS 235 - Homework 8

Deadline:
11:59 pm on Friday, November 19, 2021.

Purpose
To provide practice with some additional components and listeners.

How to submit:
Submit your .java files for this homework to the course Canvas site.

Important notes:
• Follow the Java coding standards mentioned in previous homework handouts and discussed in class.

• Note that Java applications with graphical user interfaces are expected to be structured as demonstrated
in the in-class example ButtonTest.java

– (that is, with an application class that creates and displays a JFrame subclass instance within the
event dispatch thread,

– and a JFrame subclass that creates and adds a JPanel subclass instance to itself in its constructor,

– and a JPanel subclass whose constructor creates and adds appropriate components to itself)

• Using appropriate additional helper methods is fine, as is using additional classes. IF you use additional
public classes, be sure to submit those as well!

• Because graphical user interfaces are involved in some of this homework's problems, the CS50 IDE
will NOT work for all of this homework's problems. (Running in a browser, on the cloud, it cannot
access your screen to display a JFrame.)

If you have a Terminal or bash shell, you can compile and run Java as you do from the CS50 IDE
Terminal.

AND -- I have verified that Java works -- compiles and runs -- from the Command Prompt on
vlab.humboldt.edu as it does from the CS50 IDE, also.

That is:

– Log into vlab.humboldt.edu

– In the search bar on the lower left, search for "command prompt", and click on the "Command
Prompt" app that comes up.

– Even though this is a Windows Command Prompt window and not a bash shell, commands such as
mkdir and cd and ls work here.

– I found that if I saved a .java file on the vlab desktop, then from the Command Prompt I could do

CS 235 - Homework 8 p. 1

CS 235 - Homework 8

Deadline:
11:59 pm on Friday, November 19, 2021.

Purpose
To provide practice with some additional components and listeners.

How to submit:
Submit your .java files for this homework to the course Canvas site.

Important notes:
• Follow the Java coding standards mentioned in previous homework handouts and discussed in class.

• Note that Java applications with graphical user interfaces are expected to be structured as demonstrated
in the in-class example ButtonTest.java

– (that is, with an application class that creates and displays a JFrame subclass instance within the
event dispatch thread,

– and a JFrame subclass that creates and adds a JPanel subclass instance to itself in its constructor,

– and a JPanel subclass whose constructor creates and adds appropriate components to itself)

• Using appropriate additional helper methods is fine, as is using additional classes. IF you use additional
public classes, be sure to submit those as well!

• Because graphical user interfaces are involved in some of this homework's problems, the CS50 IDE
will NOT work for all of this homework's problems. (Running in a browser, on the cloud, it cannot
access your screen to display a JFrame.)

If you have a Terminal or bash shell, you can compile and run Java as you do from the CS50 IDE
Terminal.

AND -- I have verified that Java works -- compiles and runs -- from the Command Prompt on
vlab.humboldt.edu as it does from the CS50 IDE, also.

That is:

– Log into vlab.humboldt.edu

– In the search bar on the lower left, search for "command prompt", and click on the "Command
Prompt" app that comes up.

– Even though this is a Windows Command Prompt window and not a bash shell, commands such as
mkdir and cd and ls work here.

– I found that if I saved a .java file on the vlab desktop, then from the Command Prompt I could do

CS 235 - Homework 8 p. 2

the following:
C:\Users\st10> cd Desktop

C:\Users\st10\Desktop> javac MyGuiApp.java

C:\Users\st10\Desktop> java MyGuiApp

...and my application would compile and run!

– (But save your .java files to your Google Drive for safer, longer-term storage that can be more
easily accessed than the vlab Desktop!)

Problem 1 - ScrollColorPlay.java

JScrollBar basics
Consider the Week 11 Lab's JScrollBarDemo.java (also posted along with this homework handout
for your convenience).

Amongst its other uses, a JScrollBar can convenient for selecting an integer within a range. And it can
be made sensitive to AdjustmentListener events (and it turns out that the
AdjustmentListener interface is another functional interface! So you can create an instance of its
using a 1-argument lambda expression.)

One of its constructors expects:

• the desired orientation for the new JScrollBar, either the named constant
JScrollBar.VERTICAL or JScrollBar.HORIZONTAL

• the int initial value of the new JScrollBar (and where the left- or top- of its "bar", depending on its
orientation, will initially be placed)

• an int so-called extent -- this affects how "wide" the bar on the JScrollBar appears, but it is also
how far the value "jumps" when you "click" outside the "bar" on the JScrollBar

• an int minimum value for this JScrollBar

• an int maximum value for this JScrollBar

A JScrollBar can be made sensitive to AdjustmentEvent events by adding an
AdjustmentListener to it, using its addAdjustmentListener method.

This interface AdjustmentListener happens to be a functional interface, so that you can create an
instance of this interface with its required method by using a one-argument lambda expression. (Its one
argument is the AdjustmentEvent event that triggered it.)

And, JScrollBar's getValue method expects no arguments and returns the JScrollBar's current
value.

This should be enough to try out some JScrollBar objects in this problem.

Your task
Recall ColorPlay2.java from Homework 6, Problem 1. It turns out that scrollbars are quite a

CS 235 - Homework 8 p. 2

the following:
C:\Users\st10> cd Desktop

C:\Users\st10\Desktop> javac MyGuiApp.java

C:\Users\st10\Desktop> java MyGuiApp

...and my application would compile and run!

– (But save your .java files to your Google Drive for safer, longer-term storage that can be more
easily accessed than the vlab Desktop!)

Problem 1 - ScrollColorPlay.java

JScrollBar basics
Consider the Week 11 Lab's JScrollBarDemo.java (also posted along with this homework handout
for your convenience).

Amongst its other uses, a JScrollBar can convenient for selecting an integer within a range. And it can
be made sensitive to AdjustmentListener events (and it turns out that the
AdjustmentListener interface is another functional interface! So you can create an instance of its
using a 1-argument lambda expression.)

One of its constructors expects:

• the desired orientation for the new JScrollBar, either the named constant
JScrollBar.VERTICAL or JScrollBar.HORIZONTAL

• the int initial value of the new JScrollBar (and where the left- or top- of its "bar", depending on its
orientation, will initially be placed)

• an int so-called extent -- this affects how "wide" the bar on the JScrollBar appears, but it is also
how far the value "jumps" when you "click" outside the "bar" on the JScrollBar

• an int minimum value for this JScrollBar

• an int maximum value for this JScrollBar

A JScrollBar can be made sensitive to AdjustmentEvent events by adding an
AdjustmentListener to it, using its addAdjustmentListener method.

This interface AdjustmentListener happens to be a functional interface, so that you can create an
instance of this interface with its required method by using a one-argument lambda expression. (Its one
argument is the AdjustmentEvent event that triggered it.)

And, JScrollBar's getValue method expects no arguments and returns the JScrollBar's current
value.

This should be enough to try out some JScrollBar objects in this problem.

Your task
Recall ColorPlay2.java from Homework 6, Problem 1. It turns out that scrollbars are quite a

CS 235 - Homework 8 p. 3

convenient choice for entering possible red, green, and blue values.

Create a Java application ScrollColorPlay.java that uses JScrollBar instances for entering the
red, blue, and green values, meeting the following additional specifications:

• It must contain your name (visibly) within it, somewhere, in some pleasing form.

• Somehow label the scrollbars to indicate which is for the Red value, which is for the Blue value, and
which is for the Green value (this can be tricky; see the tips below).

• Use an AdjustmentListener object or object such that, whenever one of these scrollbars is
adjusted:

– whatever panel you have showing the resulting color is updated accordingly, and

– uneditable textfields containing the current red, green, and blue values are also updated accordingly
(so if you find a combination you like, you can write down the red, green, and blue values for easier
use elsewhere)

You choose the layout, but I will warn you that I found it a bit tricky - here are some tips from my
experience playing with this:

• JScrollBars don't seem to work well using FlowLayout - in my playing around, they often came
out very short and unusable.

– I have had better luck using them in the NORTH, SOUTH, EAST or WEST of a BorderLayout,

– or in a 3-row, 1-column grid on a GridLayout subpanel in the center of a BorderLayout panel
or subpanel.

• But - there are three scrollbars! There is probably something cool to be done here with GridLayout,
but I used the multi-BorderLayout-panel approach instead -- one scrollbar in the NORTH of a panel,
another in the NORTH of a second panel in the center of the first, and another in the NORTH of a third
panel in the center of the second...!

• Since the scrollbar takes up the whole NORTH if you use BorderLayout - how could one label them?
The user needs to know which is red, which is blue, and which is green!

– I hope one of you will come up with something slicker, but ...

– This could be as straightforward as a label above or below the 3 scrollbars saying "set Red, Green,
and Blue values as desired:" (and hope the user assumes they set Red using the top scrollbar, Green
using the 2nd scrollbar, and Blue using the bottom scrollbar)

– I suspect that a GridLayout subpanel in the WEST of the outermost panel can work if you play
with the JLabel objects' font sizes a bit... 8-)

I found the resulting application even more fun to play around with than the ColorPlay2 was --
JScrollBars really are a good component for this task!

Submit your resulting ScrollColorPlay.java.

Problem 2
Let's combine more components into a single GUI. Consider a setting/theme of your choice (besides
pizza... 8-)). But, consider a setting where you'd like someone to:

CS 235 - Homework 8 p. 3

convenient choice for entering possible red, green, and blue values.

Create a Java application ScrollColorPlay.java that uses JScrollBar instances for entering the
red, blue, and green values, meeting the following additional specifications:

• It must contain your name (visibly) within it, somewhere, in some pleasing form.

• Somehow label the scrollbars to indicate which is for the Red value, which is for the Blue value, and
which is for the Green value (this can be tricky; see the tips below).

• Use an AdjustmentListener object or object such that, whenever one of these scrollbars is
adjusted:

– whatever panel you have showing the resulting color is updated accordingly, and

– uneditable textfields containing the current red, green, and blue values are also updated accordingly
(so if you find a combination you like, you can write down the red, green, and blue values for easier
use elsewhere)

You choose the layout, but I will warn you that I found it a bit tricky - here are some tips from my
experience playing with this:

• JScrollBars don't seem to work well using FlowLayout - in my playing around, they often came
out very short and unusable.

– I have had better luck using them in the NORTH, SOUTH, EAST or WEST of a BorderLayout,

– or in a 3-row, 1-column grid on a GridLayout subpanel in the center of a BorderLayout panel
or subpanel.

• But - there are three scrollbars! There is probably something cool to be done here with GridLayout,
but I used the multi-BorderLayout-panel approach instead -- one scrollbar in the NORTH of a panel,
another in the NORTH of a second panel in the center of the first, and another in the NORTH of a third
panel in the center of the second...!

• Since the scrollbar takes up the whole NORTH if you use BorderLayout - how could one label them?
The user needs to know which is red, which is blue, and which is green!

– I hope one of you will come up with something slicker, but ...

– This could be as straightforward as a label above or below the 3 scrollbars saying "set Red, Green,
and Blue values as desired:" (and hope the user assumes they set Red using the top scrollbar, Green
using the 2nd scrollbar, and Blue using the bottom scrollbar)

– I suspect that a GridLayout subpanel in the WEST of the outermost panel can work if you play
with the JLabel objects' font sizes a bit... 8-)

I found the resulting application even more fun to play around with than the ColorPlay2 was --
JScrollBars really are a good component for this task!

Submit your resulting ScrollColorPlay.java.

Problem 2
Let's combine more components into a single GUI. Consider a setting/theme of your choice (besides
pizza... 8-)). But, consider a setting where you'd like someone to:

CS 235 - Homework 8 p. 4

• make a choice of exactly one option from not too large a number of options, for which radio buttons
would be appropriate (choose one entree, choose one auto make, choose one hotel room type, choose
one player category, choose one tree species, choose one concert, etc.)

• make a choice of zero or more options from not too large a number of options, for which checkboxes
would be appropriate (choose zero or more condiments, choose zero or more auto options, choose from
optional extra-cost hotel room amenities, choose player or tree characteristics, choose concert extras,
etc.)

• make a choice of an integer quantity, for which a scrollbar would be appropriate (choose a desired
spiciness level between 1 and 10, choose the sound-level of the engine between 50 and 80, choose the
desired room quality index between 1 to 5, set player initial strength between 5 and 15, etc.)

• (you may add additional choices using additional components of your choice, if you wish)

Design and implement a pleasingly-designed application PrefChooser.java, which meets the
following requirements:

• It must contain your name (visibly) within it, somewhere, in some pleasing form.

• It should include the components mentioned above to allow the user to make the choices you have
determined above.

• The overall layout should look "nice".

• The user can indicate that they have finished making their choices by clicking a button that, when
clicked, "sends" the chosen preferences by bringing up an appropriate JOptionPane whose contents
include a summary of the current choices, based on what the user has selected at that point.

– Notice that this is different from many of our earlier applications -- something isn't happening each
time the user selects or unselects something. Instead, when a button is clicked, then the current
selections are used.

Submit your resulting PrefChooser.java.

CS 235 - Homework 8 p. 4

• make a choice of exactly one option from not too large a number of options, for which radio buttons
would be appropriate (choose one entree, choose one auto make, choose one hotel room type, choose
one player category, choose one tree species, choose one concert, etc.)

• make a choice of zero or more options from not too large a number of options, for which checkboxes
would be appropriate (choose zero or more condiments, choose zero or more auto options, choose from
optional extra-cost hotel room amenities, choose player or tree characteristics, choose concert extras,
etc.)

• make a choice of an integer quantity, for which a scrollbar would be appropriate (choose a desired
spiciness level between 1 and 10, choose the sound-level of the engine between 50 and 80, choose the
desired room quality index between 1 to 5, set player initial strength between 5 and 15, etc.)

• (you may add additional choices using additional components of your choice, if you wish)

Design and implement a pleasingly-designed application PrefChooser.java, which meets the
following requirements:

• It must contain your name (visibly) within it, somewhere, in some pleasing form.

• It should include the components mentioned above to allow the user to make the choices you have
determined above.

• The overall layout should look "nice".

• The user can indicate that they have finished making their choices by clicking a button that, when
clicked, "sends" the chosen preferences by bringing up an appropriate JOptionPane whose contents
include a summary of the current choices, based on what the user has selected at that point.

– Notice that this is different from many of our earlier applications -- something isn't happening each
time the user selects or unselects something. Instead, when a button is clicked, then the current
selections are used.

Submit your resulting PrefChooser.java.

	Deadline:
	Purpose
	How to submit:
	Important notes:
	Problem 1 - ScrollColorPlay.java
	JScrollBar basics
	Your task

	Problem 2

