
CS 325 - DB Reading Packet 1: "Database Processing and Development" p. 1
Sharon Tuttle - last modified: 2019-08-23

CS 325 - DB Reading Packet 1: "Database Processing and
Development"

SOURCES:
• Kroenke, "Database Processing: Fundamentals, Design, and Implementation", 7th edition, Chapter 1,

Prentice Hall, 1999.

• Connolly and Begg, "Database Systems: A Practical Approach to Design Implementation and
Management", 3rd Edition, Addison-Wesley.

• Rob and Coronel, "Database Systems: Design, Implementation, and Management", 3rd Edition,
Thomson, 1997.

Intro to Databases
Let's start with the question: What is a database? We'll work our way to a more technical definition,
but to start:

a (relational) database is a collection of relations, or tables, holding information about different
interrelated entities.
In a later packet, we'll discuss this idea of an entity -- some collection of instances of something
important in a world or scenario -- and we'll eventually see that an entity can be represented by one or
more relational tables in a relational database.

But before we go on, let's make sure something is clear: is Oracle a database? is Excel? is Access?

Answer: No. Excel is a spreadsheet program, and so doesn't belong in our discussion for this class at all.
But you'd be surprised how many people think it is a "database program", because it often looks so
"tabular" -- and you'd also be amazed at the lengths people go to do things in Excel that would be more
easily done with database software.

Why am I claiming that Oracle and Access are not "databases", though? Because, really, they are one
level up from that -- in the world of database design, programs/products such as Oracle, Access,
MySQL, PostgreSQL, SQL Server, Informix, and many more are database management systems, often
abbreviated as DBMSs. A DBMS is a program or collection of programs that acts as the interface
between a user or application program and a database. (Although, that said, we may describe a database
managed by an Oracle DBMS as an Oracle database, a database managed by an Access DBMS as an
Access database, and so on.)

My favorite parallel is to think about operating systems, and how one can consider the operating system
as software that serves as the interface between the user or an application program and a computer's
hardware. Likewise, a DBMS serves as the interface between the user or an application program and a
database.

This DBMS, this interface, manages the database structure, controls access to the data stored in the
database, and provides various tools to allow users/application programs to use the data. It provides a
useful illusion of how the data is organized to people and to application programs, hiding the actual
physical details of how the data is actually stored.

Before going on, let's consider the term database application. This is simply an application program that
makes use of a database. CS 328 has as its focus the programming of such database applications.

CS 325 - DB Reading Packet 1: "Database Processing and Development" p. 2
Sharon Tuttle - last modified: 2019-08-23

Note that a database may be used at a variety of levels -- for example:

• personal - one concurrent user

• workgroup - say, less than 25 concurrent users

• organizational - say, 100s of concurrent users

The Relationship between Application Programs and the DBMS
You'll recall that we just mentioned that a user or an application program may interact with a DBMS. It
is certainly possible, when an application program interacts with a DBMS, that a person may be
interacting with that application program in turn (that is, a person may interact with an application
program that interacts with the DBMS to actually access database data).

Some DBMSs provide such a variety of tools for users that the line between the DBMS and application
programs can become increasingly blurred -- consider, for example, a DBMS that offers features such as
built-in forms tools, graphical query-by-example, and so on. Although we are talking mostly about
database design and implementation this semester, you should remember that many users will not
interact directly with the database tables via the DBMS, but will instead interact via various forms,
reports, and queries within applications that interact with the DBMS.

Another point, before we proceed. Note that you are often not given the source of a DBMS (at least, not
for a commercial DBMS); you generally cannot change or modify the DBMS itself. By "database
design", then, we mean "the design of the database structure that will be used to store and manage data
rather than the design of the DBMS software".

But, if you have a sufficiently powerful DBMS, why are we so concerned about database design?
Because, just as a wonderful, rich operating system does not guarantee that a programmer will not write
a scummy application program that runs under that OS, a wonderful DBMS does not guarantee that a
poorly-designed database will run well when managed by that DBMS. "Even a good DBMS will
perform poorly with a badly designed database.”

History Part 1: from File-Processing Systems to Database
Systems

File-Processing Systems
(Kroenke, p. 10) It is useful "...to look at the characteristics of systems that predated the use of database
technology….", to "reveal the problems that database technology has solved", or at least alleviated.

The first business information systems stored groups of records in separate files, and were called file-
processing systems. It is useful at this point to point out that the concept of a file has had more than one
meaning in computing -- not all files are the "streams" of characters you are probably used to from the
popular stream-based file input/output packages available in such languages as C++ and Java.

An alternative view, more common in languages such as COBOL, is of a file as a collection of related
records, where each record is a collection of logically-connected fields, and where each field is a
character or a group of characters. This view, of a file as a collection of related records, is the more
traditional "mainframe" view, I'd say; and it is also the area from which databases "grew".

So, imagine it is the 1960's, and companies are (p. 16, Kroenke) "producing data at phenomenal rates in
file processing systems" … and, they were finding, as the sheer quantity of data increased, that "the data

CS 325 - DB Reading Packet 1: "Database Processing and Development" p. 3
Sharon Tuttle - last modified: 2019-08-23

were becoming difficult to manage, and new systems were becoming increasingly difficult to develop".
In short, they were bumping right into some important limitations of file-processing systems --
limitations that become apparent as the amount of data involved increases:

• separated and isolated data

• (unnecessary) data duplication

• application program dependence

• incompatible files

• difficulty of representing data in the users' perspectives

And note how the above list is not complete, by any means -- consider, for example, dealing with
implementing security or strategically sharing data when it is all stored in such record-based files.

Consider the following example, as we discuss the above limitations. Consider: you have a collection of
restaurants, some that you already like, some that you are interesting in trying. Let's say that you
categorize these in different ways -- for example,

• by price

• by type of food

• by location

• by hours (open for breakfast? at 3:00 am? etc.)

• by methods of payment accepted (cash only? credit cards OK? checks OK?)

...to make it easier for those times when you want to go out to eat, but are having trouble coming up with
where you want to eat.

One way to handle this might be to store this information in different files. You might have, say, a list of
Italian restaurants in one file, restaurants that are open all night in another, restaurants that take credit
cards in a third, pizza places in a fourth, restaurants with entrees less than $5 in a fifth, and so on. Keep
this example in mind -- we'll be coming back to it as we discuss the file-processing shortcomings listed
earlier.

Separated and isolated data
Data that is separated into different files -- isolated from the data in other files -- can make that data
difficult to relate to each other when that might be desired. In our small example, how would you write a
program to give you Italian restaurants that are open all night, from these files? It's not impossible, but it
is difficult, and likely just enough bother to discourage maximum use of one's data.

(Unnecessary) Data duplication
Consider our restaurant files. The same data may be stored in numerous different files, different numbers
of times: for example, the address and phone number for an inexpensive pizza place that is open all
night might appear in several different files. As another example, consider a rental client at a DVD rental
store -- if such a company stored its information in a file-processing system, imagine how often a
customer's address, phone number, or contact information might be stored: once for a rental file, maybe
again for special orders, maybe again for special promotions, and the list goes on.

CS 325 - DB Reading Packet 1: "Database Processing and Development" p. 4
Sharon Tuttle - last modified: 2019-08-23

And, the extra space this takes is not as big a problem as the potential for data integrity problems that
can occur as a result of such unnecessarily duplicated data. Consider: what if a restaurant changes its
phone number? What if a customer moves? What if you do not change all of the copies of such
information? And what if a restaurant closes? I should, then, remove all mentions of it.

Kroenke discusses how the idea of data integrity is not so much that the data in a collection, whether of
files or within a database, is correct, but that it is logically consistent within that collection of data. Can
you see that if one file lists the phone number of Larry's House o' Pastry as 555-2827, and another lists
its phone number as 666-2827, then the data in those two files is not logically consistent? And -- which,
in that case, is more likely to be the correct phone number?

Application program dependence
In a file-processing system, application programs tend to heavily depend on the file formats -- that is, the
physical formats of files and records become an inherent part of the application code.

Why is that such a problem? Consider: what if the file format changes? Say, an area goes from 7-digit
telephone dialing to 10-digit dialing, or you decide to store zip codes with zip-plus-4 instead of plain 5-
digit zip codes. Such changes often require changing every application program that uses a file whose
record format has been changed, maybe even if it never uses phone numbers or zip codes. When you
change the physical format of a file, you may have to change all applications that use that file, even if
the change is to a field not used by that application.

Incompatible files
This is a little harder to understand now that we are so used to stream-based ASCII or Unicode files, but
record-based files' format often depended on the language or product used to generate them. The result
was that files from different "sources" might end up unable to be readily combined or compared, or
difficult to process jointly.

Difficulty of representing data in the users' perspectives
This issue is simply noting that, in a record-based files system, it is difficult to represent the data in a
form that seems "natural" to users, not to mention quite hard to do so quickly, or on a whim (to follow a
hunch, for example). It is hard to support queries, particularly so-called ad hoc queries. (What is a
query? In the simplest sense, it is simply a question; and an ad hoc query, then, is a "spur-of-the-
moment" question, one you want to ask after the data is there, that you didn't necessarily have in mind
when gathering the data or organizing it into files.) This discourages creative use of one's data -- and
makes it very hard for others to use such data, as they have to know how someone else organized it into
files, what format they used, and so on.

We are not saying, here, that storing data in files is simply and irredeemably awful; obviously, we still
use files happily and frequently. What we are saying is that, as the quantity of data grows, it gets harder
and harder to deal with data that is stored in files. That is, we would like an alternative to files for
collections of data that may be used in different ways by different people and different applications,
especially when it may be used on a day-to-day basis within some setting, and especially if one wishes
to encourage brainstorming and other creative uses of such data.

CS 325 - DB Reading Packet 1: "Database Processing and Development" p. 5
Sharon Tuttle - last modified: 2019-08-23

Database Processing Systems
So, database technology was developed largely in answer to these limitations of file-processing systems.
Basically, a major "big idea" here is that lower-level, "file" level details should be hidden from
application programs by the DBMS. That is, the application program deals with the DBMS, not the
actual files containing the data, and so the application program does not have to know or care about the
actual physical format in which the data is stored.

Hopefully, then, a database processing system has at least the potential to have the following advantages
over the file-processing approach:

• integrated data

• reduced (unnecessary) data duplication

• decreased application program dependence

• easier representation of the users' perspectives

And, there is the potential for other benefits, too, including (but certainly not limited to) improved
security, more sharing of data, economy of scale, and more.

Integrated data
In a database system, all of the application data is stored in a single facility called the database, managed
and accessed via a DBMS. A programmer does not need to write programs to consolidate the files, or to
try to relate data that may be related in different files -- instead, the application programmer indicates
what is needed, and the DBMS takes care of the actions required to do so. Instead of a collection of files,
which may or may not be related, in a database-processing system all of the data is conceptually in one
"place", the database.

Reduced (unnecessary) data duplication
It is important to understand that data duplication is not eliminated in a database. But, in a well-
designed database, unnecessary data duplication can be reduced, and in such a way as to potentially
increase data integrity. In a well-designed database, you generally store most information just once, but
because the data is related and integrated it can be processed and related in various ways via the DBMS
as needed. And, it is reduced without losing the possibility of finding the phone number of a restaurant,
or the address of a customer, etc., regardless of the many contexts that a restaurant or customer may be
involved. When data duplication is reduced, that likewise reduces the chances of data integrity problems
due to changing one copy of a datum but not all others.

Note that we're going to find, during the course of the semester, that sometimes we use data duplication
deliberately for beneficial ends -- that duplicated data is not always bad -- but, we do want to avoid
unnecessarily duplicated data, and we'll be discussing what that means in some detail.

Decreased application program dependence
Because a DBMS essentially hides the actual physical file format of the data from users and application
programs, database processing reduces the dependence of programs on those file formats. A DBMS
could completely change how the physical data files implementing a particular database were formatted,
and application programs using that database would not be affected as all as long as how those
applications request data from the DBMS does not change. The DBMS really insulates the application
programs from caring about the actual, physical format of the data. Application programs are dependent

CS 325 - DB Reading Packet 1: "Database Processing and Development" p. 6
Sharon Tuttle - last modified: 2019-08-23

on what they get from the DBMS, not on however the data within the underlying database is stored.
Better still, with many DBMS's, the application program can specify, to at least some degree, what they
want, and in what format!

(Really, this is an example of the information hiding concept that you hopefully heard about when
introduced to object-oriented programming and abstract data types!)

The benefits here can go even further -- for example, consider something like Java's Java Data Base
Connectivity (JDBC) Application Programming Interface (API), which allows you to connect to literally
dozens of different DBMSs with a single mostly-common interface.

Easier representation of the users' perspectives
In a relational DBMS -- which will be our primary focus in this course -- thanks to standardized query
languages and powerful abstractions such as relations, such a DBMS can more easily represent the
objects found in the user's world, in the user's perspective. And, many DBMSs' provide tools to get
different views of related data, from different viewpoints; we'll discuss some of these possibilities
further as the semester progresses.

But database processing isn't all advantages...
This is not to say that database processing brings nothing but advantages, however. Most complex things
have both advantages and disadvantages.

For example, DBMSs can be very complex, and can get very large from a memory point of view (as can
the database itself). Note that one cannot say definitively, for a given collection of data, whether storing
that data in files or in a database managed by a DBMS would take less room; one can describe scenarios
that could go either way.

DBMSs can be very expensive, and it can be likewise expensive to convert data into a database.

One also cannot state definitively whether the performance would be better for an application dealing
with a DBMS than for one dealing with files; a DBMS is designed to be more general, trying to satisfy
the needs of many, whereas a custom application can be highly optimized. Also, when large quantities of
data are being streamed constantly into storage, sometimes the DBMS overhead is too time-consuming
to keep up.

And of course centralized data introduces the potential for a central point of failure -- backups and
security for centralized data have to be taken seriously.

	SOURCES:
	Intro to Databases
	The Relationship between Application Programs and the DBMS
	History Part 1: from File-Processing Systems to Database Systems
	File-Processing Systems
	Separated and isolated data
	(Unnecessary) Data duplication
	Application program dependence
	Incompatible files
	Difficulty of representing data in the users' perspectives

	Database Processing Systems
	Integrated data
	Reduced (unnecessary) data duplication
	Decreased application program dependence
	Easier representation of the users' perspectives
	But database processing isn't all advantages...

