
CS 325 - DB Reading Packet 3: "Intro to the Relational Model" p. 1
Sharon Tuttle - last modified: 2021-08-31

CS 325 - DB Reading Packet 3: "Introduction to the
Relational Model and Relational Operations"

Sources:
• Kroenke, "Database Processing: Fundamentals, Design, and Implementation", 7th edition,

Chapter 1, Prentice Hall, 1999.

• Connolly and Begg, "Database Systems: A Practical Approach to Design Implementation and
Management", 3rd Edition, Addison-Wesley.

• Ricardo, "Databases Illuminated", Jones and Bartlett.

• Sunderraman, "Oracle 9i Programming: A Primer", Addison-Wesley.

• Ullman, "Principles of Database Systems", 2nd Edition, Computer Science Press.

Introduction to the Relational Model and Relational
Operations
As we have already mentioned, the relational model was first developed by E.F. Codd, at IBM,
in 1970, based on a branch of mathematics. And, as we also mentioned, while it was considered
a breakthrough in terms of theory form the start, it was also considered to be impractical during
its early years: a DBMS implementing a relational database would require too much computer
overhead, and could not possibly be fast or efficient enough to "ever" be practical. But,
fortunately, hardware and OS efficiency did improve enough, and hardware and memory became
cheap enough, for that overhead to become affordable after all.

And why is there so much overhead? Because a relational DBMS, or RDBMS, is abstracting out
a LOT of the physical details by providing the very powerful, elegantly simple relational view
of one's data.

There are several reasons, then, that the relational model is important, besides its elegance:

• the relational model can be used to express DBMS-independent database designs, since the
constructs of the relational model are so broad and general;

• the relational model is the basis for a whole important category of DBMS products!

The Relational Model
In the relational model, a relational database is a collection of relations.

And, what is a relation?

Formally, it is "a subset of the Cartesian product of a list of domains" (Ullman, p. 19). You might
recall that a Cartesian product of two sets is a set containing every (ordered) pairing of one thing
from the first set with one thing from the second set -- that is, the Cartesian product of the sets
{A, B, C} and {1, 2} is the set { (A, 1), (A, 2), (B, 1), (B, 2), (C, 1), (C, 2) }.

But -- how does this lead to relations? Let's expand on this relation definition a bit.

In Sunderraman, a relation scheme/schema is defined as a finite sequence of unique attribute
names -- for example,

CS 325 - DB Reading Packet 3: "Intro to the Relational Model" p. 1
Sharon Tuttle - last modified: 2021-08-31

CS 325 - DB Reading Packet 3: "Introduction to the
Relational Model and Relational Operations"

Sources:
• Kroenke, "Database Processing: Fundamentals, Design, and Implementation", 7th edition,

Chapter 1, Prentice Hall, 1999.

• Connolly and Begg, "Database Systems: A Practical Approach to Design Implementation and
Management", 3rd Edition, Addison-Wesley.

• Ricardo, "Databases Illuminated", Jones and Bartlett.

• Sunderraman, "Oracle 9i Programming: A Primer", Addison-Wesley.

• Ullman, "Principles of Database Systems", 2nd Edition, Computer Science Press.

Introduction to the Relational Model and Relational
Operations
As we have already mentioned, the relational model was first developed by E.F. Codd, at IBM,
in 1970, based on a branch of mathematics. And, as we also mentioned, while it was considered
a breakthrough in terms of theory form the start, it was also considered to be impractical during
its early years: a DBMS implementing a relational database would require too much computer
overhead, and could not possibly be fast or efficient enough to "ever" be practical. But,
fortunately, hardware and OS efficiency did improve enough, and hardware and memory became
cheap enough, for that overhead to become affordable after all.

And why is there so much overhead? Because a relational DBMS, or RDBMS, is abstracting out
a LOT of the physical details by providing the very powerful, elegantly simple relational view
of one's data.

There are several reasons, then, that the relational model is important, besides its elegance:

• the relational model can be used to express DBMS-independent database designs, since the
constructs of the relational model are so broad and general;

• the relational model is the basis for a whole important category of DBMS products!

The Relational Model
In the relational model, a relational database is a collection of relations.

And, what is a relation?

Formally, it is "a subset of the Cartesian product of a list of domains" (Ullman, p. 19). You might
recall that a Cartesian product of two sets is a set containing every (ordered) pairing of one thing
from the first set with one thing from the second set -- that is, the Cartesian product of the sets
{A, B, C} and {1, 2} is the set { (A, 1), (A, 2), (B, 1), (B, 2), (C, 1), (C, 2) }.

But -- how does this lead to relations? Let's expand on this relation definition a bit.

In Sunderraman, a relation scheme/schema is defined as a finite sequence of unique attribute
names -- for example,

CS 325 - DB Reading Packet 3: "Intro to the Relational Model" p. 2
Sharon Tuttle - last modified: 2021-08-31

employees = (empl_id, empl_name, empl_addr, empl_salary)

Each attribute name A is associated with a domain, dom(A), a set of values, which includes a
special value null. (Be careful - null is special! It means the lack of any value, rather than
any particular value.) dom(A), then, is the set of values attribute A can possibly have -- for
example, dom(empl_id) might be the set of integers between 1000 and 9999 inclusive, while
dom(empl_salary) might be the set of real numbers between 0 and 100000, inclusive, along
with the special value null.

Given a relation scheme/schema R = (A1, A2, ... An), then, a relation r on the relation
scheme/schema R is defined as any finite subset of the Cartesian product
dom(A1) x dom(A2) x ... x dom(An)

So, for the employees scheme/schema given above, a relation r on that schema employees
would be any subset of combinations of an empl_id, an empl_name, an empl_addr, and
an empl_salary. An example relation under this relational schema could be something like:
{ (1111, 'Jones', '111 Humbold Lane', 20000),
 (2222, 'Smith', '123 Lumberjack Ave', 25000) }

See how that looks, well, rather tabular?

But, notice that a relation, in the relational model, is really a set, and a set of what? For an
employees relation, it is a set of those combinations of an empl_id, an empl_name, an
empl_addr, and an empl_salary. That is, the example relation given above has two
elements: the element (1111, 'Jones', '111 Humbold Lane', 20000) and the
element (2222, 'Smith', '123 Lumberjack Ave', 25000). In the relational
model, each of the elements in a relation is also referred to as a tuple (which, when pronounced,
rhymes with "couple").

So -- the above was a discussion of the formal definition of a relation. What, then, is the formal
definition of a relational database scheme or schema? It is a finite set of relation
schemes/schemas {R1, R2, ... Rm}. Or, in our parlance from the last lecture, it is a
collection of relation structures!

And, what is a relational database on a relational database scheme/schema D? It is a set of
relations {r1, r2, ... rm} where each ri is a relation on the corresponding relation
scheme/schema Ri.

Those, then, are the formal definitions of a relation scheme/schema, a relation, a relational
database scheme/schema, and a relational database!

Different Terms for the Same Thing
Because relational databases "grew" out of work in quite separate areas, you'll find different
terminology for the same things that still persists in different writings about databases. You
should be comfortable with all of these terms, so you'll know what is meant whichever is used.

Above, you've seen the terms relation, tuple, and attribute. Those are indeed the terms that
mathematicians would use for these major ideas within the relational model. But those with a
more "mainframe" background might see parallels between those terms and file, record, and
field (but they would always mean a record-based file, not a stream-based file!). And most others
would more recognize these as table, row, and column.

CS 325 - DB Reading Packet 3: "Intro to the Relational Model" p. 2
Sharon Tuttle - last modified: 2021-08-31

employees = (empl_id, empl_name, empl_addr, empl_salary)

Each attribute name A is associated with a domain, dom(A), a set of values, which includes a
special value null. (Be careful - null is special! It means the lack of any value, rather than
any particular value.) dom(A), then, is the set of values attribute A can possibly have -- for
example, dom(empl_id) might be the set of integers between 1000 and 9999 inclusive, while
dom(empl_salary) might be the set of real numbers between 0 and 100000, inclusive, along
with the special value null.

Given a relation scheme/schema R = (A1, A2, ... An), then, a relation r on the relation
scheme/schema R is defined as any finite subset of the Cartesian product
dom(A1) x dom(A2) x ... x dom(An)

So, for the employees scheme/schema given above, a relation r on that schema employees
would be any subset of combinations of an empl_id, an empl_name, an empl_addr, and
an empl_salary. An example relation under this relational schema could be something like:
{ (1111, 'Jones', '111 Humbold Lane', 20000),
 (2222, 'Smith', '123 Lumberjack Ave', 25000) }

See how that looks, well, rather tabular?

But, notice that a relation, in the relational model, is really a set, and a set of what? For an
employees relation, it is a set of those combinations of an empl_id, an empl_name, an
empl_addr, and an empl_salary. That is, the example relation given above has two
elements: the element (1111, 'Jones', '111 Humbold Lane', 20000) and the
element (2222, 'Smith', '123 Lumberjack Ave', 25000). In the relational
model, each of the elements in a relation is also referred to as a tuple (which, when pronounced,
rhymes with "couple").

So -- the above was a discussion of the formal definition of a relation. What, then, is the formal
definition of a relational database scheme or schema? It is a finite set of relation
schemes/schemas {R1, R2, ... Rm}. Or, in our parlance from the last lecture, it is a
collection of relation structures!

And, what is a relational database on a relational database scheme/schema D? It is a set of
relations {r1, r2, ... rm} where each ri is a relation on the corresponding relation
scheme/schema Ri.

Those, then, are the formal definitions of a relation scheme/schema, a relation, a relational
database scheme/schema, and a relational database!

Different Terms for the Same Thing
Because relational databases "grew" out of work in quite separate areas, you'll find different
terminology for the same things that still persists in different writings about databases. You
should be comfortable with all of these terms, so you'll know what is meant whichever is used.

Above, you've seen the terms relation, tuple, and attribute. Those are indeed the terms that
mathematicians would use for these major ideas within the relational model. But those with a
more "mainframe" background might see parallels between those terms and file, record, and
field (but they would always mean a record-based file, not a stream-based file!). And most others
would more recognize these as table, row, and column.

CS 325 - DB Reading Packet 3: "Intro to the Relational Model" p. 3
Sharon Tuttle - last modified: 2021-08-31

We will deliberately avoid the term file for referring to a table or relation (the whole point of a
DBMS is to hide file details from the user!). But when we say table, we do mean a collection of
rows and columns that meets the definition of a relation as we've just discussed. You'll frequently
see row and tuple used interchangeably for one of the sets within such a table or relation -- and
you'll even occasionally see record. And you'll frequently see column, attribute, and even field
used interchangeably for, well, a column within a table or relation.

So, you should be comfortable with what is meant, regardless of which of these terms we are
using.

Natural Restrictions on Tables Arising from the Definition of
a Relation
Notice that, if you follow the line of the relational model definitions, then certain things must
ALWAYS be true about the resulting relations, the resulting tabular beasties:

• Assume that a cell of a relation/table is the intersection of a row and a column -- that is, a cell
is a single attribute/column value within a tuple/row. There can only be one "value" per "cell";
that is, the cells of the relation must be single-valued. There can be no multi-valued cells!

– (Consider those definitions we just discussed -- if you are building subsets of Cartesian
products of domains, there is no provision for including more than one value of an
attribute's domain within one of the elements, one of the tuples, of the resulting set!)

• Each column in the table - each attribute in the relation - should be a characteristic with a
particular domain of possible "valid" values (including both physical and semantic
definitions). That is, a given column cannot contain values from multiple domains -- you
cannot have values of different types within the same column! All of the entries in any
column/attribute/field must be of the same "kind" -- and note that a domain often includes the
special (lack of a) value null.

– aside: the physical definition of a domain might be the data type you use to represent the
values in that domain; the semantic definition is a more logical description of the allowed
values, what they "mean".

– So, while a physical definition of dom(salary) might be a floating point type, the
semantic definition would be that it includes values that can be employee salaries, the
amount an employee makes in, say, a year. One would not then expect a negative value to
be part of the semantic definition of dom(salary), even if DBMS limitations lead you
to provide a physical definition of dom(salary) that permits such values. You might
need to limit the possible values of that column in some other fashion. So, all of the values
in a column are required to have the same "meaning", the same domain.

• No duplicate rows are allowed! Consider: relations are sets, and sets, by definition, don't have
duplicate members -- an element either is a set member, or it isn't. And since a relation is sets
of tuples/rows/records, it then follows that a relation has NO duplicate tuples/rows/records.

• And, as the order of elements in a set is not important -- {A, B, C} and {C, B, A} and
{B, A, C} are all considered depictions of the same set -- so the order of
rows/tuples/records in a table/relation is also not considered important.

– That said, sometimes people would like a depiction of a relation ordered in a certain way --
and so SQL will provide a means for requesting such a depiction, as we'll see in a later

CS 325 - DB Reading Packet 3: "Intro to the Relational Model" p. 3
Sharon Tuttle - last modified: 2021-08-31

We will deliberately avoid the term file for referring to a table or relation (the whole point of a
DBMS is to hide file details from the user!). But when we say table, we do mean a collection of
rows and columns that meets the definition of a relation as we've just discussed. You'll frequently
see row and tuple used interchangeably for one of the sets within such a table or relation -- and
you'll even occasionally see record. And you'll frequently see column, attribute, and even field
used interchangeably for, well, a column within a table or relation.

So, you should be comfortable with what is meant, regardless of which of these terms we are
using.

Natural Restrictions on Tables Arising from the Definition of
a Relation
Notice that, if you follow the line of the relational model definitions, then certain things must
ALWAYS be true about the resulting relations, the resulting tabular beasties:

• Assume that a cell of a relation/table is the intersection of a row and a column -- that is, a cell
is a single attribute/column value within a tuple/row. There can only be one "value" per "cell";
that is, the cells of the relation must be single-valued. There can be no multi-valued cells!

– (Consider those definitions we just discussed -- if you are building subsets of Cartesian
products of domains, there is no provision for including more than one value of an
attribute's domain within one of the elements, one of the tuples, of the resulting set!)

• Each column in the table - each attribute in the relation - should be a characteristic with a
particular domain of possible "valid" values (including both physical and semantic
definitions). That is, a given column cannot contain values from multiple domains -- you
cannot have values of different types within the same column! All of the entries in any
column/attribute/field must be of the same "kind" -- and note that a domain often includes the
special (lack of a) value null.

– aside: the physical definition of a domain might be the data type you use to represent the
values in that domain; the semantic definition is a more logical description of the allowed
values, what they "mean".

– So, while a physical definition of dom(salary) might be a floating point type, the
semantic definition would be that it includes values that can be employee salaries, the
amount an employee makes in, say, a year. One would not then expect a negative value to
be part of the semantic definition of dom(salary), even if DBMS limitations lead you
to provide a physical definition of dom(salary) that permits such values. You might
need to limit the possible values of that column in some other fashion. So, all of the values
in a column are required to have the same "meaning", the same domain.

• No duplicate rows are allowed! Consider: relations are sets, and sets, by definition, don't have
duplicate members -- an element either is a set member, or it isn't. And since a relation is sets
of tuples/rows/records, it then follows that a relation has NO duplicate tuples/rows/records.

• And, as the order of elements in a set is not important -- {A, B, C} and {C, B, A} and
{B, A, C} are all considered depictions of the same set -- so the order of
rows/tuples/records in a table/relation is also not considered important.

– That said, sometimes people would like a depiction of a relation ordered in a certain way --
and so SQL will provide a means for requesting such a depiction, as we'll see in a later

CS 325 - DB Reading Packet 3: "Intro to the Relational Model" p. 4
Sharon Tuttle - last modified: 2021-08-31

reading packet. But, in terms of the mathematical concept of a relation, the order of
rows/tuples/records is not significant (and in terms of the abstraction provided by a
relational DBMS, you should not care in what order a relation's rows/tuples/records happen
to be stored).

• Each column/attribute/field must have a unique name (within a table/relation/record).

– This is not saying that you cannot have the same column name in two different tables -- it
is saying that, within a single table, you cannot have two columns, two attributes, with the
same name.

– If you then consider a column's/attribute's/field's "full" name to be
<relation_name>.<attribute_name>, then, since you cannot have two relations
with the same name within a database, then even within a database each
column/attribute/field will end up also having a unique name.

• But, again as in sets, the order of the attributes/columns/fields does not matter, either.

So, note that each of the following are depictions of the same relation, a dept relation, whose
relation structure form can be given as:
dept(dept_name, DEPT_NUM, dept_loc)

dept_name dept_num dept_loc

Accounting 10 New York

Research 20 Dallas

Sales 30 Chicago

Operations 40 Boston

dept_num dept_name dept_loc

40 Operations Boston

30 Sales Chicago

20 Research Dallas

10 Accounting New York

This particular relation has 4 tuples/rows/records, made up of 3 attributes/columns/fields each.

A Few More Words on Relations and Relational Schemas
Now, when you are actually creating your own relations, you very likely will not store random
tuples, random combinations of values from the attribute domains -- rather, you are likely to
choose values from the domains of each attribute that pertain to some actual "thing", or portion
of an actual "thing" -- for example, the empl_id, empl_name, empl_addr, and
empl_salary for an actual employee in your "world"! So, a tuple represents a relationship
among a set of values.

And, if you give the name of a relation/table, followed by, in parentheses, the (unique) names of
each column/attribute/field (capitalizing or otherwise indicating the primary key attributes), that
is what we call relation structure form.

CS 325 - DB Reading Packet 3: "Intro to the Relational Model" p. 4
Sharon Tuttle - last modified: 2021-08-31

reading packet. But, in terms of the mathematical concept of a relation, the order of
rows/tuples/records is not significant (and in terms of the abstraction provided by a
relational DBMS, you should not care in what order a relation's rows/tuples/records happen
to be stored).

• Each column/attribute/field must have a unique name (within a table/relation/record).

– This is not saying that you cannot have the same column name in two different tables -- it
is saying that, within a single table, you cannot have two columns, two attributes, with the
same name.

– If you then consider a column's/attribute's/field's "full" name to be
<relation_name>.<attribute_name>, then, since you cannot have two relations
with the same name within a database, then even within a database each
column/attribute/field will end up also having a unique name.

• But, again as in sets, the order of the attributes/columns/fields does not matter, either.

So, note that each of the following are depictions of the same relation, a dept relation, whose
relation structure form can be given as:
dept(dept_name, DEPT_NUM, dept_loc)

dept_name dept_num dept_loc

Accounting 10 New York

Research 20 Dallas

Sales 30 Chicago

Operations 40 Boston

dept_num dept_name dept_loc

40 Operations Boston

30 Sales Chicago

20 Research Dallas

10 Accounting New York

This particular relation has 4 tuples/rows/records, made up of 3 attributes/columns/fields each.

A Few More Words on Relations and Relational Schemas
Now, when you are actually creating your own relations, you very likely will not store random
tuples, random combinations of values from the attribute domains -- rather, you are likely to
choose values from the domains of each attribute that pertain to some actual "thing", or portion
of an actual "thing" -- for example, the empl_id, empl_name, empl_addr, and
empl_salary for an actual employee in your "world"! So, a tuple represents a relationship
among a set of values.

And, if you give the name of a relation/table, followed by, in parentheses, the (unique) names of
each column/attribute/field (capitalizing or otherwise indicating the primary key attributes), that
is what we call relation structure form.

CS 325 - DB Reading Packet 3: "Intro to the Relational Model" p. 5
Sharon Tuttle - last modified: 2021-08-31

Strictly speaking, relation structures plus constraints on allowable data values is a relational
database schema. We'll be giving a less-mathematical definition later on, but we'll find these
definitions really don't conflict too badly -- the less-mathematical definition will just state some
of these constraints on allowable data values more specifically.

Functional Dependencies
Both for this packet's purposes and for the purposes of explaining normalization in a future
packet, it is useful to discuss the concept of primary key a bit more formally. We'll start with the
concept of a functional dependency.

A functional dependency is a relationship between or among attributes. If, given the value of
one attribute, A, you can look up/uniquely obtain the value of another, B, then we say that B is
functionally dependent on A.

That is, consider an employees relation:
employees(EMPL_ID, empl_name, empl_addr, empl_salary)

If you are given the value of a particular empl_id, you can look up a single empl_salary
that corresponds to that empl_id value. However, multiple employees might have the same
salary. You should not reasonably expect to always obtain a single empl_id given a particular
salary.

(Note that, in determining functional dependencies, it is more important what is reasonable given
the meanings and possible domains of the attributes within one's "world" rather than the
particular rows that may be in a relation at some particular time. If there is ever a period of time
in which all of the employee salaries happen to be different, that would not suddenly allow us to
say that empl_id is functionally dependent on empl_salary.)

So, we say that attribute B is functionally dependent on attribute A if the value of A determines
the value of B -- if, knowing the value of A, we can uniquely determine the value of B.

Some have argued that the storage and retrieval of functional dependencies is a major reason for
having a database!

Functional dependencies are written using the following notation:
A -> B

empl_id -> empl_salary

read as:

• A functionally determines B; empl_id functionally determines empl_salary

• A determines B; empl_id determines empl_salary

• B is functionally dependent on A; empl_salary is functionally dependent on empl_id

The attribute on the left-hand-side of the arrow in this notation is called the determinant -- A
and empl_id are the determinants in these two functional dependencies.

Note that functional dependencies might involve groups of attributes -- consider the relation:
Course_grades(STUD_ID, SECTION_NUM, Grade)

CS 325 - DB Reading Packet 3: "Intro to the Relational Model" p. 5
Sharon Tuttle - last modified: 2021-08-31

Strictly speaking, relation structures plus constraints on allowable data values is a relational
database schema. We'll be giving a less-mathematical definition later on, but we'll find these
definitions really don't conflict too badly -- the less-mathematical definition will just state some
of these constraints on allowable data values more specifically.

Functional Dependencies
Both for this packet's purposes and for the purposes of explaining normalization in a future
packet, it is useful to discuss the concept of primary key a bit more formally. We'll start with the
concept of a functional dependency.

A functional dependency is a relationship between or among attributes. If, given the value of
one attribute, A, you can look up/uniquely obtain the value of another, B, then we say that B is
functionally dependent on A.

That is, consider an employees relation:
employees(EMPL_ID, empl_name, empl_addr, empl_salary)

If you are given the value of a particular empl_id, you can look up a single empl_salary
that corresponds to that empl_id value. However, multiple employees might have the same
salary. You should not reasonably expect to always obtain a single empl_id given a particular
salary.

(Note that, in determining functional dependencies, it is more important what is reasonable given
the meanings and possible domains of the attributes within one's "world" rather than the
particular rows that may be in a relation at some particular time. If there is ever a period of time
in which all of the employee salaries happen to be different, that would not suddenly allow us to
say that empl_id is functionally dependent on empl_salary.)

So, we say that attribute B is functionally dependent on attribute A if the value of A determines
the value of B -- if, knowing the value of A, we can uniquely determine the value of B.

Some have argued that the storage and retrieval of functional dependencies is a major reason for
having a database!

Functional dependencies are written using the following notation:
A -> B

empl_id -> empl_salary

read as:

• A functionally determines B; empl_id functionally determines empl_salary

• A determines B; empl_id determines empl_salary

• B is functionally dependent on A; empl_salary is functionally dependent on empl_id

The attribute on the left-hand-side of the arrow in this notation is called the determinant -- A
and empl_id are the determinants in these two functional dependencies.

Note that functional dependencies might involve groups of attributes -- consider the relation:
Course_grades(STUD_ID, SECTION_NUM, Grade)

CS 325 - DB Reading Packet 3: "Intro to the Relational Model" p. 6
Sharon Tuttle - last modified: 2021-08-31

A student may take several different course sections -- you cannot say that Stud_id ->
Grade. And, likewise, a section contains many students -- you cannot say that Section_num
-> Grade. But if the assumption is that a student can only be registered in a given section of a
course once, it is quite reasonable to say that:
(Stud_id, Section_num) -> Grade

That is, the combination/pair of a stud_id and a section_num does uniquely determine a
Grade.

Here is a small self-check: make sure that these make sense to you:

• If X -> (Y, Z), then it is also true that X -> Y and X -> Z.

• However, if (X, Y) -> Z, then you cannot reasonably assume that X -> Z or that Y ->
Z.

Keys
We'll now discuss a series of important key definitions.

A superkey is a set of one or more attributes that uniquely identifies a tuple. Again, this is
based on what is reasonable given the "world", what is true in the day-to-day operations of that
"world" (sometimes called its business rules), and the domains of the data, not whatever might
happen to be the contents of particular rows at one time.

Since a relation, by definition, cannot contain duplicate rows, then every relation has the
superkey consisting of all of its attributes (an entire row uniquely determines itself!) But
sometimes subsets of attributes may be a superkey, also. Since empl_id uniquely identifies an
Employees tuple -- no two employees are given the same empl_id -- then the set consisting
of just empl_id is a superkey for the employees relation, also.

Consider the Course_grades relation -- the pair (Stud_id, Sect_num) uniquely
determines a row, as does the trio (Stud_id, Sect_num, Grade) -- so, both of those are
superkeys of the Course_grades relation. However, the set of just Course_id is not a
superkey for Course_grades -- many students take a course, so many rows may contain a
given Sect_num. Likewise, the set of just Stud_id is not a superkey for Course_grades,
either -- students often take more than one course, so several rows may contain a given
Stud_id.

One more time: it is an important point that whether an attribute, or set of attributes, is a
superkey (and whether a functional dependency exists between attributes) is determined by the
user, really -- by their model, their semantics, their business rules. If you had a school where
students were allowed to take one course, ever, then in that odd world Stud_id might indeed
be a superkey for Course_grades. When in doubt, it is not a good idea to just look at a small
sample of data, or to guess -- when in doubt, ask the user(s)!

So, most relations (although not all) have more than one superkey.

If a superkey is minimal -- if no proper subset of its attributes is also a superkey -- then such
minimal superkeys are also called candidate keys. For the relation Course_grades, the trio
(Stud_id, Sect_num, Grade) is a superkey, but not a candidate key, since it is not
minimal: its subset (Stud_id, Sect_num) is also a superkey. The pair (Stud_id,

CS 325 - DB Reading Packet 3: "Intro to the Relational Model" p. 6
Sharon Tuttle - last modified: 2021-08-31

A student may take several different course sections -- you cannot say that Stud_id ->
Grade. And, likewise, a section contains many students -- you cannot say that Section_num
-> Grade. But if the assumption is that a student can only be registered in a given section of a
course once, it is quite reasonable to say that:
(Stud_id, Section_num) -> Grade

That is, the combination/pair of a stud_id and a section_num does uniquely determine a
Grade.

Here is a small self-check: make sure that these make sense to you:

• If X -> (Y, Z), then it is also true that X -> Y and X -> Z.

• However, if (X, Y) -> Z, then you cannot reasonably assume that X -> Z or that Y ->
Z.

Keys
We'll now discuss a series of important key definitions.

A superkey is a set of one or more attributes that uniquely identifies a tuple. Again, this is
based on what is reasonable given the "world", what is true in the day-to-day operations of that
"world" (sometimes called its business rules), and the domains of the data, not whatever might
happen to be the contents of particular rows at one time.

Since a relation, by definition, cannot contain duplicate rows, then every relation has the
superkey consisting of all of its attributes (an entire row uniquely determines itself!) But
sometimes subsets of attributes may be a superkey, also. Since empl_id uniquely identifies an
Employees tuple -- no two employees are given the same empl_id -- then the set consisting
of just empl_id is a superkey for the employees relation, also.

Consider the Course_grades relation -- the pair (Stud_id, Sect_num) uniquely
determines a row, as does the trio (Stud_id, Sect_num, Grade) -- so, both of those are
superkeys of the Course_grades relation. However, the set of just Course_id is not a
superkey for Course_grades -- many students take a course, so many rows may contain a
given Sect_num. Likewise, the set of just Stud_id is not a superkey for Course_grades,
either -- students often take more than one course, so several rows may contain a given
Stud_id.

One more time: it is an important point that whether an attribute, or set of attributes, is a
superkey (and whether a functional dependency exists between attributes) is determined by the
user, really -- by their model, their semantics, their business rules. If you had a school where
students were allowed to take one course, ever, then in that odd world Stud_id might indeed
be a superkey for Course_grades. When in doubt, it is not a good idea to just look at a small
sample of data, or to guess -- when in doubt, ask the user(s)!

So, most relations (although not all) have more than one superkey.

If a superkey is minimal -- if no proper subset of its attributes is also a superkey -- then such
minimal superkeys are also called candidate keys. For the relation Course_grades, the trio
(Stud_id, Sect_num, Grade) is a superkey, but not a candidate key, since it is not
minimal: its subset (Stud_id, Sect_num) is also a superkey. The pair (Stud_id,

CS 325 - DB Reading Packet 3: "Intro to the Relational Model" p. 7
Sharon Tuttle - last modified: 2021-08-31

Sect_num) is a candidate key, though, since it is a minimal superkey: neither Stud_id nor
Sect_num is a superkey.

(Remember that whether a superkey is minimal does not have to do just with how many
attributes it includes -- a two-attribute or three-attribute superkey can indeed be minimal, also.
All that matters is that no subset of attributes within that collection of attributes is also minimal.)

The primary key, then, can be defined as the candidate key that you choose for a particular
relation. (Get it? The candidate keys are the candidates for primary key!) Or, you should select a
primary key from amongst that relation's candidate keys -- the primary key is expected to be
selected from amongst those candidate keys. Some tables may indeed have multiple candidate
keys -- but the designer only selects one of those to be primary key. (Remember, a candidate key
may still be a collection of attributes! But no subset of those attributes is also a superkey.)

Once you choose a relation's primary key, and define it as the primary key in that relation's
definition, then a DBMS that supports entity integrity will enforce that primary key. That is,
such a DBMS will not permit the insertion of a row with the same primary key as an existing
row -- it will thus ensure that the primary key really does uniquely determine a row within that
table. As another part of enforcing entity integrity, such a DBMS will also not permit any
attribute that is part of the primary key to contain the special null lack-of-a-value.

Just because the database field has such a hodge-podge of terminology -- remember those
physical indexes we discussed in an earlier packet, that some DBMSs support as part of a
database to allow you to specify that certain attributes should be set up to be more-quickly
searchable? Sometimes these physical indexes are also called physical keys! But as these do not
include the idea of uniquely determining a row, on those rare occasions that we refer to these,
we'll stick with either physical index or index for these.

What, (formally), then, is a foreign key? It is an attribute or set of attributes within one relation
that is at least a candidate key of another relation -- although, in practice, many DBMSs
(including Oracle) require it to be the primary key of some other relation. So, in practice, when
the primary key of one relation is stored in a second relation, that is called a foreign key. The
relation that a foreign key references -- that the foreign key is "from", if you will -- is often
called the "parent" relation, and the relation with a foreign key is often called the "child" relation.

The importance of foreign keys is that they enable us to link tables by using controlled
redundancy -- the primary key of one table appears as the foreign key in the table to which it is
linked. In a future reading packet, we will discuss how and when to insert foreign keys as part of
the conversion from a database model to a database design/schema, because there are very
specific rules one follows in putting them in, based on the model.

So, let's say that you have a parts relation, with characteristics of parts that some store sells,
and its primary key is parts_num. There might also be an orders relation, representing
orders of parts. If each order can only be for one part, then you might decide to add the parts'
relation's primary key to the orders relation as a foreign key -- you might make parts_num
an attribute in the orders relation, and also define it as a foreign key referencing parts. So,
since each orders tuple includes the attribute part_num, that relates each order to the parts
tuple with more information about the part being ordered.

Consider -- should it be reasonable, then, for an orders tuple to contain a part_num that is
not in the parts relation? It should not be, and it could be useful for a DBMS to prevent this.
How might it prevent this? It could prevent the adding of an orders tuple with a part_num
that is not in the parts relation -- it could also prevent the removing of a parts tuple if there

CS 325 - DB Reading Packet 3: "Intro to the Relational Model" p. 7
Sharon Tuttle - last modified: 2021-08-31

Sect_num) is a candidate key, though, since it is a minimal superkey: neither Stud_id nor
Sect_num is a superkey.

(Remember that whether a superkey is minimal does not have to do just with how many
attributes it includes -- a two-attribute or three-attribute superkey can indeed be minimal, also.
All that matters is that no subset of attributes within that collection of attributes is also minimal.)

The primary key, then, can be defined as the candidate key that you choose for a particular
relation. (Get it? The candidate keys are the candidates for primary key!) Or, you should select a
primary key from amongst that relation's candidate keys -- the primary key is expected to be
selected from amongst those candidate keys. Some tables may indeed have multiple candidate
keys -- but the designer only selects one of those to be primary key. (Remember, a candidate key
may still be a collection of attributes! But no subset of those attributes is also a superkey.)

Once you choose a relation's primary key, and define it as the primary key in that relation's
definition, then a DBMS that supports entity integrity will enforce that primary key. That is,
such a DBMS will not permit the insertion of a row with the same primary key as an existing
row -- it will thus ensure that the primary key really does uniquely determine a row within that
table. As another part of enforcing entity integrity, such a DBMS will also not permit any
attribute that is part of the primary key to contain the special null lack-of-a-value.

Just because the database field has such a hodge-podge of terminology -- remember those
physical indexes we discussed in an earlier packet, that some DBMSs support as part of a
database to allow you to specify that certain attributes should be set up to be more-quickly
searchable? Sometimes these physical indexes are also called physical keys! But as these do not
include the idea of uniquely determining a row, on those rare occasions that we refer to these,
we'll stick with either physical index or index for these.

What, (formally), then, is a foreign key? It is an attribute or set of attributes within one relation
that is at least a candidate key of another relation -- although, in practice, many DBMSs
(including Oracle) require it to be the primary key of some other relation. So, in practice, when
the primary key of one relation is stored in a second relation, that is called a foreign key. The
relation that a foreign key references -- that the foreign key is "from", if you will -- is often
called the "parent" relation, and the relation with a foreign key is often called the "child" relation.

The importance of foreign keys is that they enable us to link tables by using controlled
redundancy -- the primary key of one table appears as the foreign key in the table to which it is
linked. In a future reading packet, we will discuss how and when to insert foreign keys as part of
the conversion from a database model to a database design/schema, because there are very
specific rules one follows in putting them in, based on the model.

So, let's say that you have a parts relation, with characteristics of parts that some store sells,
and its primary key is parts_num. There might also be an orders relation, representing
orders of parts. If each order can only be for one part, then you might decide to add the parts'
relation's primary key to the orders relation as a foreign key -- you might make parts_num
an attribute in the orders relation, and also define it as a foreign key referencing parts. So,
since each orders tuple includes the attribute part_num, that relates each order to the parts
tuple with more information about the part being ordered.

Consider -- should it be reasonable, then, for an orders tuple to contain a part_num that is
not in the parts relation? It should not be, and it could be useful for a DBMS to prevent this.
How might it prevent this? It could prevent the adding of an orders tuple with a part_num
that is not in the parts relation -- it could also prevent the removing of a parts tuple if there

CS 325 - DB Reading Packet 3: "Intro to the Relational Model" p. 8
Sharon Tuttle - last modified: 2021-08-31

are orders of that part, and it could prevent modifying an orders tuple's part_num to a
part_num not in the parts relation.

If you can define a foreign key in a set of relations, and the DBMS enforces that -- that is, if the
DBMS does not allow a value for a foreign key that is not already in the "parent" relation for that
key, and it does not allow a "parent" tuple to be deleted if any "child" tuples have that tuple's
primary key as its foreign key -- then that DBMS is said to be enforcing referential integrity.
Or, to put this another way: referential integrity means that if a foreign key contains a value (if it
is not null), then that value must refer to an existing tuple in another relation.

Relational Operations
There are operations in relational algebra that turn out to be very useful for querying data in
relational databases. What is relational algebra? It is algebra in which the variables represent
relations (in contrast to, say, numeric algebra, in which the variables represent numbers). Just
like you can talk about operations on numbers in numeric algebra -- and how operations such as
addition on numbers and multiplication on numbers result in numbers -- in relational algebra,
relational operations on relations result in relations. That is, where the arithmetic operators in
numeric algebra manipulate numbers, in relational algebra the relational operators manipulate
relations to form new relations (which can in turn be operated on by other relational operators).
You can build compound relational expressions as you can build compound arithmetic
expressions!

In practice, then, this is the basis for ad-hoc queries -- with relational operators, the only limit
you have to what you can ask about a well-designed set of relations is your imagination (and
your relational operations skill)!

Some of these operators are so-called set-theoretic operators -- they derive from set theory, but
here the sets are sets of tuples (since, remember, that is what tuples are!). These include union,
difference, intersection, and Cartesian product.
The relation-theoretic operations are particular to relational algebra: rename, selection,
projection, joins of various types, and division.

Any relational DBMS worthy of the name had better support at least the operations of selection,
projection, and the particular joins of natural and/or equi-joins!! So, in this packet, we will
concentrate on those three (and also Cartesian product along the way, as you have to understand
it to understand natural joins and equi-joins).

The selection relational operation
Be careful not to confuse the selection relational operation with the (unfortunately named)
select statement in SQL! They are not synonymous, as we will discuss later on.

The selection operation selects just the specified rows from a table (just the specified tuples
from a relation). That is, given a select operator and a relation and some criterion, the result is
the relation consisting of just those rows from the given relation that meet that criterion. (Note
that, if a relation is a subset of the Cartesian product of a list of domains, then a further subset of
that subset is still a relation!)

(You could think of selection as being a kind of "horizontal" filter, as taking a "horizontal" subset
of a relation.)

CS 325 - DB Reading Packet 3: "Intro to the Relational Model" p. 8
Sharon Tuttle - last modified: 2021-08-31

are orders of that part, and it could prevent modifying an orders tuple's part_num to a
part_num not in the parts relation.

If you can define a foreign key in a set of relations, and the DBMS enforces that -- that is, if the
DBMS does not allow a value for a foreign key that is not already in the "parent" relation for that
key, and it does not allow a "parent" tuple to be deleted if any "child" tuples have that tuple's
primary key as its foreign key -- then that DBMS is said to be enforcing referential integrity.
Or, to put this another way: referential integrity means that if a foreign key contains a value (if it
is not null), then that value must refer to an existing tuple in another relation.

Relational Operations
There are operations in relational algebra that turn out to be very useful for querying data in
relational databases. What is relational algebra? It is algebra in which the variables represent
relations (in contrast to, say, numeric algebra, in which the variables represent numbers). Just
like you can talk about operations on numbers in numeric algebra -- and how operations such as
addition on numbers and multiplication on numbers result in numbers -- in relational algebra,
relational operations on relations result in relations. That is, where the arithmetic operators in
numeric algebra manipulate numbers, in relational algebra the relational operators manipulate
relations to form new relations (which can in turn be operated on by other relational operators).
You can build compound relational expressions as you can build compound arithmetic
expressions!

In practice, then, this is the basis for ad-hoc queries -- with relational operators, the only limit
you have to what you can ask about a well-designed set of relations is your imagination (and
your relational operations skill)!

Some of these operators are so-called set-theoretic operators -- they derive from set theory, but
here the sets are sets of tuples (since, remember, that is what tuples are!). These include union,
difference, intersection, and Cartesian product.
The relation-theoretic operations are particular to relational algebra: rename, selection,
projection, joins of various types, and division.

Any relational DBMS worthy of the name had better support at least the operations of selection,
projection, and the particular joins of natural and/or equi-joins!! So, in this packet, we will
concentrate on those three (and also Cartesian product along the way, as you have to understand
it to understand natural joins and equi-joins).

The selection relational operation
Be careful not to confuse the selection relational operation with the (unfortunately named)
select statement in SQL! They are not synonymous, as we will discuss later on.

The selection operation selects just the specified rows from a table (just the specified tuples
from a relation). That is, given a select operator and a relation and some criterion, the result is
the relation consisting of just those rows from the given relation that meet that criterion. (Note
that, if a relation is a subset of the Cartesian product of a list of domains, then a further subset of
that subset is still a relation!)

(You could think of selection as being a kind of "horizontal" filter, as taking a "horizontal" subset
of a relation.)

CS 325 - DB Reading Packet 3: "Intro to the Relational Model" p. 9
Sharon Tuttle - last modified: 2021-08-31

For example, say that you have a Student relation as follows:
Student:

Stud_ID Stud_Name Stud_Major Stud_Grade_Level Stud_Age

123 Jones History JR 21

158 Parks Math GR 26

105 Anderson Management SR 27

271 Smith History JR 19

Then the result of the selection operation on the Student relation of rows in which Age < 25
would be:
Student WHERE Age < 25

Stud_ID Stud_Name Stud_Major Stud_Grade_Level Stud_Age

123 Jones History JR 21

271 Smith History JR 19

The projection relational operation
The projection operation grabs just the specified columns/attributes from a relation, and
eliminates any duplicate rows in what results, so that the result will still be a relation.

(You could think of projection as being a kind of "vertical" filter, as taking a "vertical" subset of
a relation.)

Or, it grabs specified columns from a table to create a new table, eliminating any duplicate rows
before the final result.

For example, say that you still have a Student relation as follows:
Student:

Stud_ID Stud_Name Stud_Major Stud_Grade_Level Stud_Age

123 Jones History JR 21

158 Parks Math GR 26

105 Anderson Management SR 27

271 Smith History JR 19

Then the result of the projection operation of the Student_Major and
Stud_grade_level attributes of the Student table would be:
Student[Student_Major, Stud_Grade_level]

Stud_Major Stud_Grade_Level

History JR

Math GR

Management SR

CS 325 - DB Reading Packet 3: "Intro to the Relational Model" p. 9
Sharon Tuttle - last modified: 2021-08-31

For example, say that you have a Student relation as follows:
Student:

Stud_ID Stud_Name Stud_Major Stud_Grade_Level Stud_Age

123 Jones History JR 21

158 Parks Math GR 26

105 Anderson Management SR 27

271 Smith History JR 19

Then the result of the selection operation on the Student relation of rows in which Age < 25
would be:
Student WHERE Age < 25

Stud_ID Stud_Name Stud_Major Stud_Grade_Level Stud_Age

123 Jones History JR 21

271 Smith History JR 19

The projection relational operation
The projection operation grabs just the specified columns/attributes from a relation, and
eliminates any duplicate rows in what results, so that the result will still be a relation.

(You could think of projection as being a kind of "vertical" filter, as taking a "vertical" subset of
a relation.)

Or, it grabs specified columns from a table to create a new table, eliminating any duplicate rows
before the final result.

For example, say that you still have a Student relation as follows:
Student:

Stud_ID Stud_Name Stud_Major Stud_Grade_Level Stud_Age

123 Jones History JR 21

158 Parks Math GR 26

105 Anderson Management SR 27

271 Smith History JR 19

Then the result of the projection operation of the Student_Major and
Stud_grade_level attributes of the Student table would be:
Student[Student_Major, Stud_Grade_level]

Stud_Major Stud_Grade_Level

History JR

Math GR

Management SR

CS 325 - DB Reading Packet 3: "Intro to the Relational Model" p. 10
Sharon Tuttle - last modified: 2021-08-31

Do you see how the original Student table had 4 rows, but this projection only has 3? That's
because a duplicate row was indeed eliminated from this projection's result (there were two rows
with (History, JR)).

The Cartesian product operation
Now, because of their importance, I would prefer show equi-join and natural join next. However,
one needs Cartesian product to explain what equi-join and natural join mean, and so it must be
discussed before discussing equi-join and natural join.

The Cartesian product operation on two relations concatenates every tuple/row from one relation
to every tuple/row from another relation, forming a third relation. That is, it produces a relation
consisting of all possible pairs of rows from 2 relations. Notice that the Cartesian product of
relation A, with m rows, and relation B, with n rows, will be a relation containing m*n rows!

For example, say that you have a Price relation as follows:
Price:

Prod_Code Price

AA 5.99

BB 22.75

And, say that you have a Location relation as follows:
Location:

Store Aisle Shelf

23 W 5

24 K 9

25 Z 6

Then the Cartesian product of Price and Location would be:
Price x Location

Prod_Code Price Store Aisle Shelf

AA 5.99 23 W 5

AA 5.99 24 K 9

AA 5.99 25 Z 6

BB 22.75 23 W 5

BB 22.75 24 K 9

BB 22.75 25 Z 6

The equi-join and natural join operations
The join operations in general create a relation that is the Cartesian product of two relations with
certain tuples removed. We are going to concentrate today on the most important join operations,
equi-join and natural join (but note that there are others as well!).

CS 325 - DB Reading Packet 3: "Intro to the Relational Model" p. 10
Sharon Tuttle - last modified: 2021-08-31

Do you see how the original Student table had 4 rows, but this projection only has 3? That's
because a duplicate row was indeed eliminated from this projection's result (there were two rows
with (History, JR)).

The Cartesian product operation
Now, because of their importance, I would prefer show equi-join and natural join next. However,
one needs Cartesian product to explain what equi-join and natural join mean, and so it must be
discussed before discussing equi-join and natural join.

The Cartesian product operation on two relations concatenates every tuple/row from one relation
to every tuple/row from another relation, forming a third relation. That is, it produces a relation
consisting of all possible pairs of rows from 2 relations. Notice that the Cartesian product of
relation A, with m rows, and relation B, with n rows, will be a relation containing m*n rows!

For example, say that you have a Price relation as follows:
Price:

Prod_Code Price

AA 5.99

BB 22.75

And, say that you have a Location relation as follows:
Location:

Store Aisle Shelf

23 W 5

24 K 9

25 Z 6

Then the Cartesian product of Price and Location would be:
Price x Location

Prod_Code Price Store Aisle Shelf

AA 5.99 23 W 5

AA 5.99 24 K 9

AA 5.99 25 Z 6

BB 22.75 23 W 5

BB 22.75 24 K 9

BB 22.75 25 Z 6

The equi-join and natural join operations
The join operations in general create a relation that is the Cartesian product of two relations with
certain tuples removed. We are going to concentrate today on the most important join operations,
equi-join and natural join (but note that there are others as well!).

CS 325 - DB Reading Packet 3: "Intro to the Relational Model" p. 11
Sharon Tuttle - last modified: 2021-08-31

In an equi-join or a natural join, you have a join condition that is an equality -- a condition
specifying that a column or columns in one table have the same value as the column or columns
in another table. You then request a join operation on those two tables based on that equality.

The first step of any join (at least conceptually) is to perform a Cartesian product of the two
tables being joined.

Then, for an equi-join, you perform the second step: a relational selection of the result, selecting
only those rows for which the join condition is true. This result is called the equi-join.

But, if you have selected rows for which an equality-based join condition is true, can you see that
two columns will have the same contents? (The columns have different names --
table1.attrib, table2.attrib -- but the same contents.) So, a natural join performs a
third step, a further projection operation, projecting all of the columns of the result except for one
of the "duplicate-contents" columns.

For example, say that you have Student and Enrollment relations as follows:
Student:

Stud_ID Stud_Name Stud_Major Stud_Grade_Level Stud_Age

123 Jones History JR 21

158 Parks Math GR 26

105 Anderson Management SR 27

271 Smith History JR 19

Enrollment:

Stud_ID Class_name Position_Num

123 H350 1

105 BS490 3

123 BA490 7

Say that you wish to compute the equi-join and natural join of these tables based on the join
condition (Student.Stud_id = Enrollment.Stud_id).

First, compute the Cartesian product of these two tables:
Student x Enrollment

Student.
Stud_id

Stud_Name Stud_Major Stud_Grade
_Level

Stud_Age Enrollment.
Stud_ID

Class_Name Position_
Num

123 Jones History JR 21 123 H350 1

123 Jones History JR 21 105 BS490 3

123 Jones History JR 21 123 BA490 7

158 Parks Math GR 26 123 H350 1

158 Parks Math GR 26 105 BS490 3

158 Parks Math GR 26 123 BA490 7

105 Anderson Management SR 27 123 H350 1

105 Anderson Management SR 27 105 BS490 3

CS 325 - DB Reading Packet 3: "Intro to the Relational Model" p. 11
Sharon Tuttle - last modified: 2021-08-31

In an equi-join or a natural join, you have a join condition that is an equality -- a condition
specifying that a column or columns in one table have the same value as the column or columns
in another table. You then request a join operation on those two tables based on that equality.

The first step of any join (at least conceptually) is to perform a Cartesian product of the two
tables being joined.

Then, for an equi-join, you perform the second step: a relational selection of the result, selecting
only those rows for which the join condition is true. This result is called the equi-join.

But, if you have selected rows for which an equality-based join condition is true, can you see that
two columns will have the same contents? (The columns have different names --
table1.attrib, table2.attrib -- but the same contents.) So, a natural join performs a
third step, a further projection operation, projecting all of the columns of the result except for one
of the "duplicate-contents" columns.

For example, say that you have Student and Enrollment relations as follows:
Student:

Stud_ID Stud_Name Stud_Major Stud_Grade_Level Stud_Age

123 Jones History JR 21

158 Parks Math GR 26

105 Anderson Management SR 27

271 Smith History JR 19

Enrollment:

Stud_ID Class_name Position_Num

123 H350 1

105 BS490 3

123 BA490 7

Say that you wish to compute the equi-join and natural join of these tables based on the join
condition (Student.Stud_id = Enrollment.Stud_id).

First, compute the Cartesian product of these two tables:
Student x Enrollment

Student.
Stud_id

Stud_Name Stud_Major Stud_Grade
_Level

Stud_Age Enrollment.
Stud_ID

Class_Name Position_
Num

123 Jones History JR 21 123 H350 1

123 Jones History JR 21 105 BS490 3

123 Jones History JR 21 123 BA490 7

158 Parks Math GR 26 123 H350 1

158 Parks Math GR 26 105 BS490 3

158 Parks Math GR 26 123 BA490 7

105 Anderson Management SR 27 123 H350 1

105 Anderson Management SR 27 105 BS490 3

CS 325 - DB Reading Packet 3: "Intro to the Relational Model" p. 12
Sharon Tuttle - last modified: 2021-08-31

Student.
Stud_id

Stud_Name Stud_Major Stud_Grade
_Level

Stud_Age Enrollment.
Stud_ID

Class_Name Position_
Num

105 Anderson Management SR 27 123 BA490 7

271 Smith History JR 19 123 H350 1

271 Smith History JR 19 105 BS490 3

271 Smith History JR 19 123 BA490 7

Second, perform a selection on this result of only those rows for which (Student.stud_id
= Enrollment.stud_id); the resulting relation will be:

Student.
Stud_id

Stud_Name Stud_Major Stud_Grade
_Level

Stud_Age Enrollment.
Stud_ID

Class_Name Position_
Num

123 Jones History JR 21 123 H350 1

123 Jones History JR 21 123 BA490 7

105 Anderson Management SR 27 105 BS490 3

This is the equi-join of these two tables on the join condition (Student.stud_id =
Enrollment.stud_id). (Do you see how, if the join condition involves columns with the
same domain, the resulting equi-join essentially combines related information into a single
relation? Above, each row contains a student's information combined with the information about
one of that student's course enrollments.)

Do you also see how the columns Student.Stud_id and Enrollment.Stud_id have
exactly the same contents? (And must, since we selected the rows based on that very equality!)

Then, the natural join of these two tables on this join condition would include the third step of
now projecting all of the columns in this result except for one of the "duplicate-contents"
columns (and it doesn't matter which one of the two is omitted). So, for example, the resulting
natural join in this case could be:

Student.
Stud_id

Stud_Name Stud_Major Stud_Grade
_Level

Stud_Age Class_Name Position_
Num

123 Jones History JR 21 H350 1

123 Jones History JR 21 BA490 7

105 Anderson Management SR 27 BS490 3

So, either an equi-join or a natural join basically "combines" relations based on common
attributes. Note that if you use a join condition on columns whose domains do not have the same
meaning, the result likely will be meaningless!

It has been said that equi-join/natural join are the source of the power of relational databases,
allowing the use of independent relations linked by common attributes (really, by carefully-
chosen foreign keys!). In good practice, join conditions usually involve comparing primary or
foreign keys in one table to their corresponding foreign keys in another table.

Also note: doesn't the above sound horribly inefficient? If so, note that above is conceptually
what equi-join and natural join mean -- the actual algorithm used by a DBMS to perform such
joins will be different than that described here, and much more efficient, although the results will
be the same.

CS 325 - DB Reading Packet 3: "Intro to the Relational Model" p. 12
Sharon Tuttle - last modified: 2021-08-31

Student.
Stud_id

Stud_Name Stud_Major Stud_Grade
_Level

Stud_Age Enrollment.
Stud_ID

Class_Name Position_
Num

105 Anderson Management SR 27 123 BA490 7

271 Smith History JR 19 123 H350 1

271 Smith History JR 19 105 BS490 3

271 Smith History JR 19 123 BA490 7

Second, perform a selection on this result of only those rows for which (Student.stud_id
= Enrollment.stud_id); the resulting relation will be:

Student.
Stud_id

Stud_Name Stud_Major Stud_Grade
_Level

Stud_Age Enrollment.
Stud_ID

Class_Name Position_
Num

123 Jones History JR 21 123 H350 1

123 Jones History JR 21 123 BA490 7

105 Anderson Management SR 27 105 BS490 3

This is the equi-join of these two tables on the join condition (Student.stud_id =
Enrollment.stud_id). (Do you see how, if the join condition involves columns with the
same domain, the resulting equi-join essentially combines related information into a single
relation? Above, each row contains a student's information combined with the information about
one of that student's course enrollments.)

Do you also see how the columns Student.Stud_id and Enrollment.Stud_id have
exactly the same contents? (And must, since we selected the rows based on that very equality!)

Then, the natural join of these two tables on this join condition would include the third step of
now projecting all of the columns in this result except for one of the "duplicate-contents"
columns (and it doesn't matter which one of the two is omitted). So, for example, the resulting
natural join in this case could be:

Student.
Stud_id

Stud_Name Stud_Major Stud_Grade
_Level

Stud_Age Class_Name Position_
Num

123 Jones History JR 21 H350 1

123 Jones History JR 21 BA490 7

105 Anderson Management SR 27 BS490 3

So, either an equi-join or a natural join basically "combines" relations based on common
attributes. Note that if you use a join condition on columns whose domains do not have the same
meaning, the result likely will be meaningless!

It has been said that equi-join/natural join are the source of the power of relational databases,
allowing the use of independent relations linked by common attributes (really, by carefully-
chosen foreign keys!). In good practice, join conditions usually involve comparing primary or
foreign keys in one table to their corresponding foreign keys in another table.

Also note: doesn't the above sound horribly inefficient? If so, note that above is conceptually
what equi-join and natural join mean -- the actual algorithm used by a DBMS to perform such
joins will be different than that described here, and much more efficient, although the results will
be the same.

CS 325 - DB Reading Packet 3: "Intro to the Relational Model" p. 13
Sharon Tuttle - last modified: 2021-08-31

And that is where we will conclude for this packet. (We will discuss a few of the set-theoretic
operations on relations in a later packet.)

CS 325 - DB Reading Packet 3: "Intro to the Relational Model" p. 13
Sharon Tuttle - last modified: 2021-08-31

And that is where we will conclude for this packet. (We will discuss a few of the set-theoretic
operations on relations in a later packet.)

	Sources:
	Introduction to the Relational Model and Relational Operations
	The Relational Model
	Different Terms for the Same Thing
	Natural Restrictions on Tables Arising from the Definition of a Relation
	A Few More Words on Relations and Relational Schemas
	Functional Dependencies
	Keys
	Relational Operations
	The selection relational operation
	The projection relational operation
	The Cartesian product operation
	The equi-join and natural join operations

