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Introduction to Normalization
Today's topic could be thought of as "database literacy" -- it is one of those "core" topics that is 
considered part of every database design course and text that I have encountered. If you claim to know 
anything about databases, you are expected to know about normalization.

That said, here is an interesting irony: if you model and design your databases properly to begin with, 
starting with an ERD and then converting that ERD into a database design/schema as we will discuss, 
then you will quite likely not need to do much to normalize your tables! But you could still walk 
through the normalization process to double-check this.

Reminder: Functional Dependencies
To lead into normalization, here is a quick reminder of the concept of a functional dependency:

A functional dependency is a relationship BETWEEN or AMONG attributes. If, given the value of one 
attribute, A, you can look up/uniquely obtain the value of another, B, then we say that B is functionally 
dependent on A. 

So, using the example from earlier in the semester, consider an employees relation:
employees(EMPL_ID, empl_name, empl_addr, empl_salary)

If you are given the value of a particular empl_id, you can look up a single empl_salary that 
corresponds to that empl_id value. However, multiple employees might have the same salary. You 
could not reasonably expect to obtain a single empl_id given a particular salary. 

So, we say that attribute B is functionally dependent on attribute A if the value of A determines the 
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value of B (if, knowing the value of A, we can uniquely determine the value of B).

You should also recall the notation we use related to this:
empl_id -> empl_salary

...to indicate that empl_id determines empl_salary. And, you should know that empl_id is the 
determinant in this particular functional dependency.

Modification Anomalies
We now turn to one of the big motivations for normalization -- the concept of modification anomalies.

Not all relations are equally "good" -- some are definitely "better" than others. On what kind of basis 
might we make such a claim? Here's one: some relations turn out to work better than others over time, 
as far as day-to-day use in an operational database is concerned. (In contrast to other data repositories 
such as data warehouses, sometimes a database used for day-to-day operations within a scenario is 
called an operational database. In this course, we are focusing on such operational databases; the 
guidelines for other kinds of data repositories might be different.)

"For some relations, changing the data can have undesirable consequences, called modification 
anomalies." [Kroenke] The exact terminology for categories of anomalies varies a bit from text to text, 
and the number of such categories varies between 2 and 3, but the basic problem is the same: for 
operational data that changes to reflect day-to-day activities -- selling more widgets, registering more 
students, recording more fish swimming by a sensor, hiring new employees, etc. -- it is a problem if 
reasonable changes lead to unforeseen or undesirable other losses of information. For an operational 
database, we would prefer to avoid relations subject to modification anomalies.

It is easier to discuss modification anomalies in the context of a specific example. Consider the 
following relation Project_Work, expressed in tabular form as follows:

PROJ_NUM proj_name EMPL_NUM empl_name job_class chg_per_hr hrs
1 hurricane 101 john news EE 65 13
1 hurricane 102 david senior Comm.Tech 60 16
1 hurricane 104 anne ramoras Comm.Tech 60 19
2 coast 101 john news EE 65 15
2 coast 103 june arbro BioE 55 17
3 satellite 104 anne ramoras Comm.Tech 60 18

In this particular scenario, employees can work on more than one project, and how many hours an 
employee works on each project is of interest. The primary key, then, of this relation is (proj_num, 
empl_num). Note, also, that chg_per_hr happens to be based entirely on the employee's 
job_class, rather than on the particular employee. (That is, 
job_class -> chg_per_hr

...to use functional dependency notation. That is, job_class is a determinant for chg_per_hr.)
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Deletion Anomalies
A deletion anomaly is a modification anomaly that occurs when data is deleted. Consider our example 
relation Project_Work; what if we delete the row with empl_num 104, for anne ramoras, 
because she has left the company?

PROJ_NUM proj_name EMPL_NUM empl_name job_class chg_per_hr hrs
1 hurricane 101 john news EE 65 13
1 hurricane 102 david senior Comm.Tech 60 16
1 hurricane 104 anne ramoras Comm.Tech 60 19
2 coast 101 john news EE 65 15
2 coast 103 june arbro BioE 55 17

Do you see that we've now lost any mention of the proj_name satellite, as well as what 
proj_num corresponds to project satellite?

What if june arbro were likewise to leave, and we were to delete that row? 

PROJ_NUM proj_name EMPL_NUM empl_name job_class chg_per_hr hrs
1 hurricane 101 john news EE 65 13
1 hurricane 102 david senior Comm.Tech 60 16
1 hurricane 104 anne ramoras Comm.Tech 60 19
2 coast 101 john news EE 65 15

Do you see that we've lost the data that the charge per hour for job_class BioE is $55 an hour?

In a deletion anomaly, then, deleting a row causes the loss of additional information that it may not be 
reasonable to have completely disappear. Removing an employee should not cause one to lose the 
names of projects, nor the charges-per-hour for job classes!

Kroenke has a nice way of looking of this: a deletion anomaly can occur when facts about two or more 
"themes" are lost with a single deletion. With one deletion, we lose facts about two (or more) "themes"!

Insertion Anomalies
An insertion anomaly is a modification anomaly that occurs when data is inserted. Consider our 
example relation; what if we would like to add information about a new project, project 6, whose name 
is lumberjack?

Do you see that we can't do it? The primary key here is (emp_num, proj_num) -- we have to have 
an employee assigned to the project before we can keep track of its name. That's an unreasonable 
restriction. Likewise, what if we'd like to add a job_class CS, whose chg_per_hr is 75? Again, 
we cannot do it -- we need both a related employee and a related project before we can!

In an insertion anomaly, then, we cannot insert a fact about one thing until we have an additional fact 
about another thing.
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(Some also discuss an update anomaly, similar to the above two, for situations where it becomes 
awkward to update an existing row in a table -- perhaps an update to one employee's job_class 
causes the loss of how much a rarely-used job_class's charge-per-hour should be.)

What we will find is that many modification anomalies can be eliminated by careful redefinition of a 
relation into two or more related relations. In most circumstances (especially in most operational 
database circumstances), the redefined, or normalized, relations are preferred. (Note that the 
preferences may be different for non-operational data repositories, such as read-only data warehouses. 
Our focus in this course is operational databases, however.)

We will also find that such restructuring tends to reduce unnecessary data redundancy -- consider if 
project 1's name changes in the above row -- three rows need to have that name changed. And consider 
if we want to change the chg_per_hr for a Comm.Tech to 58 -- again, every row including a 
Comm.Tech as the job_class needs to have the chg_per_hr changed accordingly.

The process of transforming relation structures in this way to reduce modification anomalies is known 
as normalization.

Normalization
So, we would like to restructure relations so that they will not have the kinds of anomalies just 
described. Normalization is a process of "breaking" a relation up into multiple tables in such a way as 
to reduce modification anomalies. You could say that we split the relation into two or more separate 
ones, each containing a single "theme",  since relations containing more than one "theme" are 
vulnerable to modification anomalies.

Rob and Coronel put it a little differently: "Normalization is a process for assigning attributes to 
[relations]. Normalization reduces data dependencies and, by extension, helps eliminate the 
modification anomalies that result from those redundancies." However, "normalization does not 
eliminate data redundancies; instead, it produces the controlled data redundancy that lets us link 
database tables." What is this controlled data redundancy? Foreign keys -- referential integrity 
constraints that maintain the relationships built into the less-normalized original relation.

We will find that, when we split relations up in this way, we nearly always need to add some referential 
integrity constraints (some foreign keys). So, normalization does have some costs: we need to add these 
foreign keys, and so we may also increase the number of equi-join or natural join operations required 
to produce a specified query result. But, again, for an operational setting, this is usually considered a 
reasonable price to pay to be able to reduce modification anomalies.

So, how does one normalize a relation? To explain that, we need one more concept: the concept of 
normal forms.

Normal Forms
It turns out that relations can be classified based on the types of modification anomalies to which they 
are vulnerable; these classifications are called normal forms.

The most important/"classic" normal forms include:

• first normal form (1NF)
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• second normal form (2NF)

• third normal form (3NF)

• Boyce-Codd normal form (BCNF)

• fourth normal form (4NF)

• fifth normal form (5NF)

(There are also some additional, more theoretical normal forms that are beyond the scope of this 
course.)

These classifications are superset/subset -- that is, any relation in 2NF is also in 1NF, any relation in 
3NF is also in 1NF and 2NF, and so on.

Rob and Coronel note that one could think of normalization as working through a series of stages 
involving these normal forms [Rob and Coronel, p. 282]. Being in a particular normal form assures that 
a certain class of modification anomalies cannot occur. Being in a higher normal form does not 
guarantee that modification anomalies will not occur, but it does reduce them very usefully. In fact, in 
practice, usually one considers relations that are in 3NF as "good enough" in terms of modification 
anomaly reduction. Today, then, we will only discuss 1NF, 2NF, and 3NF, and how to normalize 
relations into these normal forms. (If we had time, we would briefly discuss the other normal forms 
above, but since we do not, at least be aware that they exist...)

First Normal Form (1NF)
First Normal Form turns out to be easy to describe: any "true" relation is, by definition, in 1NF!

So, as you should recall from our previous discussion of relations, this implies that:

• the cells must be single-valued

• all entries in a column must be of the same kind, from the same domain (or null)

• each column must have a unique name within a relation, but the order of the columns is insignificant

• no two rows may be identical, but the order of the rows is insignificant

• all the primary key attributes are defined (you cannot have a null primary key)

• all attributes are dependent on the primary key ("the primary key uniquely determines a row", now 
restated in functional-dependency terms...!)

Any true relation, then, meets these criteria.

So, will you ever need to do anything to transform a relation into 1NF? The most common situation 
where work is needed to get into 1NF is when it turns out that there is a (previously-unnoticed) multi-
valued attribute. (Perhaps after creating a relation, one belatedly realizes that, for some rows, there 
could reasonably be more than one value for one of the attributes.) Since cells must be single-valued, a 
relation that somehow permitted multi-valued cells would not be a "true" relation. In practice, then, one 
can make sure that a set of relations is in 1NF by making sure that all attributes are single-valued 
within each relation.

What do you do if a multi-valued attribute is identified in this process? There are some other "ugly" 
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ways to handle this, but for maximum flexibility in queries and for best results, you should "break out" 
each multi-valued attribute into its own relation as follows:

• A new relation is created, consisting of the primary key of the "original" relation and the multi-
valued attribute. Often the new relation's name indicates the nature of the multi-valued attribute. (In 
terms of style, though, you should avoid having table names that are the same as column names...)

• How does this work? For each value of the multi-valued attribute, you will have a row in this new 
relation -- so, the primary key of this new relation is the set of BOTH attributes. (You need both to 
uniquely determine a row in this relation.)

• In the new relation, that primary key from the "original" relation is defined to be a foreign key 
referencing the "original" relation.

• And, the multi-valued attribute is removed from the "original" table.

For example, consider the following relation:
Student (STU_ID, stu_lname, stu_fname, stu_phone, stu_gpa)

...and assume it is determined that, within the scenario, it is desired for a student to be able to have 
multiple phone numbers. That would cause the above to NOT be a true relation, and not in 1NF.

So, you'd create a new relation -- perhaps Student_phones -- and put the attributes stu_ID and 
stu_phone in it. The pair (stu_ID, stu_phone) would be the primary key of the new relation, 
and stu_ID in Student_phones would be a foreign key referencing Student. And, we'd remove 
stu_phone from Student. Thus, the resulting, normalized relations would be:
Student (STU_ID, stu_lname, stu_fname, stu_gpa)

Student_phones(STU_ID, STU_PHONE)
   foreign key (stu_id) references student

This, then, is what should be done for every multi-valued attribute -- it should be "broken out" into its 
own relation in this way.

Notice the elegance of this solution -- if you have a student with 8 phone numbers, he/she simply has 8 
rows in student_phones. If a student has no phones, he/she simply has no rows in 
student_phones. Want to find out all of the phone numbers, if any, for a student? Join these two 
relations on the common column stu_id, and select the rows for that particular student's name or ID: 
voila, you'll get them all! And for roommate situations, what if you'd like all students with a particular 
phone number? That's easy to find, too -- join the two relations on the common column stu_id, and 
select the rows for that particular phone number. This is very flexible, and very usable. This is 
preferable to the common kluge of trying to set up attributes such as phone1, phone2, etc. -- you are 
in trouble as soon as a student has a third phone number, you have awkward null values if a student 
only has one phone number, and queries based on finding students with given phone numbers are 
unnecessarily awkward, since you have to select rows where the phone number is in either phone1 or 
phone2, etc.

Relations that are in 1NF avoid modification anomalies due to not being relations at all -- however, 
1NF relations can still be prone to an uncomfortable number of modification anomalies. After all, the 
example relation we used at the beginning of the modification anomaly section is in 1NF -- it is a true 
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relation -- and we saw definite modification anomalies there.

Second Normal Form (2NF)
A relation is said to be in 2NF if it is in 1NF, and it includes no partial dependencies.

What is a partial dependency? You will recall that, in our functional dependencies discussion, we noted 
that a statement such as:
A -> B

...means that attribute A functionally-determines attribute B, and that B is functionally dependent on A. 
If we know the value of A, we can uniquely determine the value of B.

In our superkey/minimal key/candidate key/primary key sequence of definitions, we noted that a 
primary key functionally determines all of the other attributes within a relation -- this must be so, since 
a primary key uniquely determines a row.

A partial dependency, in particular, is when a non-primary-key attribute in a table turns out to be 
dependent on just part of the primary key. Consider our earlier table, now written in relation structure 
form:
Project_work(PROJ_NUM, proj_name, EMPL_NUM, empl_name, job_class,
             chg_per_hr, hrs)

Remember, the primary key here is (proj_num, empl_num). But notice that proj_name isn't 
functionally dependent on empl_num -- that is, while it surely is true (by the definition of a primary 
key) that:
(proj_num, empl_num) -> proj_name

... it also turns out, in this case, to be true that:
proj_num -> proj_name

This, then (proj_num -> proj_name) is an example of a partial dependency. (And it is not the 
only partial dependency in this relation.)

So, if a relation is in 1NF and has no partial dependencies -- if all of its non-primary-key attributes are 
dependent on all of the primary key -- then it is said to be in 2NF.

How can you can you transform a 1NF relation that is not 2NF into a set of relations that are? By 
following this procedure:

• Write each possible combination (subset) of the primary key attributes on its own line.

• For each non-primary-key attribute, place it on the line in which it is dependent on all of that 
combination of primary key attributes.

• For each line that has any non-key attributes in addition to primary-key attributes, that line should 
become a new relation -- give it an appropriate name, and make the primary key attribute(s) in that 
line the primary key of the new relation. (Remember, in terms of style, the relation name should not 
be the same as any of the attribute names.)

• Do you see that the tables with fewer-attribute primary keys tend to be the "home base" for that 
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primary key? So, those tables with more-attribute primary keys usually need to have those fewer-
attribute primary keys within the more-attribute primary keys declared as foreign keys back to their 
"home base" tables.

As an example, let's use this procedure on our poor table Project_Work:
Project_work(PROJ_NUM, proj_name, EMPL_NUM, empl_name, job_class, 
             chg_per_hr, hrs)

First, write each combination of attributes within its primary key on its own line:
PROJ_NUM

EMPL_NUM

PROJ_NUM, EMPL_NUM

Now, for each non-primary key attribute, put it on the line for which it is dependent on the entire 
primary key given on that line. proj_name is functionally dependent on only proj_num, so:
PROJ_NUM, proj_name

EMPL_NUM

PROJ_NUM, EMPL_NUM

Next, empl_name, job_class, and chg_per_hr are only functionally dependent on empl_num, 
so:
PROJ_NUM, proj_name

EMPL_NUM, empl_name, job_class, chg_per_hr

PROJ_NUM, EMPL_NUM

And hrs is dependent on both proj_num and empl_num -- that is the number of hours that that 
employee has worked on that project:
PROJ_NUM, proj_name

EMPL_NUM, empl_name, job_class, chg_per_hr

PROJ_NUM, EMPL_NUM, hrs

Each combination of primary key attributes has some non-key attributes as well, so each of these lines 
should correspond to a relation -- give each of these lines appropriate names and turn them into relation 
structures:
Project(PROJ_NUM, proj_name)

Employee(EMPL_NUM, empl_name, job_class, chg_per_hr)

Project_Work(PROJ_NUM, EMPL_NUM, hrs)

...and since proj_num's "home relation" is Project, and empl_num's "home relation" is 
Employee, then Project_Work needs these to be foreign keys to those relations accordingly:
Project(PROJ_NUM, proj_name)

Employee(EMPL_NUM, empl_name, job_class, chg_per_hr)
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Project_Work(PROJ_NUM, EMPL_NUM, hrs)
   foreign key (proj_num) references project,
   foreign key (empl_num) references employee

See how this reduces modification anomalies? If I want to note that a project number 6 has the name 
lumberjack, that is easy to accomplish: add that row to Project. And now no employee deletion 
can cause the loss of a project_number/project_name pair.

So, tables in 2NF do not have modification anomalies due to partial dependencies.

However, you have probably noticed that this trio of tables still has some modification anomalies -- 
these are not due to partial dependencies, however. And we need to convert these tables to 3NF to get 
rid of them.

Third Normal Form (3NF)
A relation is said to be in 3NF if it is in 1NF and 2NF, and it includes no transitive dependencies.

What is a transitive dependency? You might recall the transitive property from a math class -- when:

if    (A op B)  and (B op C)  implies that (A op C),
then that operation op is said to satisfy the transitive property;

A transitive dependency is when a non-primary-key attribute is functionally dependent on another 
non-primary-key attribute. To put is another way, it is when a non-primary-key attribute is a 
determinant. (See how transitivity plays into this? The primary key determines all of the other 
attributes, and if a relation is in 2NF the other attributes are dependent on all of the primary key. But, 
that doesn't mean that it might not be the case that, in reality,

PK -> a and a -> b, so that PK -> b

You can transform a 2NF relation that is not in 3NF into a set of 3NF relations by following this 
procedure:

• If you have more than one transitive dependency with the same determinant, combine those (for 
transformation purposes) into an also-true single transitive dependency -- 

– that is, if you have a -> b and a -> c, then for purposes of transformation, use the also-true 
a -> b, c

• Make each resulting transitive dependency into its own relation, making the determinant of the 
transitive dependency into the primary key of the new relation.

• Remove the right-hand-side attribute(s) in that transitive dependency from the original relation.

• Leave the determinant in the original relation, BUT now also make it a foreign key referencing the 
new relation.

Do you see how there are now no transitive dependencies? In the new table, the determinant is now a 
primary key, not a non-primary-key. And since you've removed the attributes dependent on that 
determinant into the new table, there is no longer a transitive dependency in the old table, either.

Considering our now-2NF example relations:
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Project(PROJ_NUM, proj_name)

Employee(EMPL_NUM, empl_name, job_class, chg_per_hr)

Project_Work(PROJ_NUM, EMPL_NUM, hrs)
   foreign key (proj_num) references project,
   foreign key (empl_num) references employee

...you may recall that it was noted earlier that job_class -> chg_per_hr. Since job_class is 
thus a determinant that is not a primary key, then this is a transitive dependency, and it must be 
removed for this set of relations to be in 3NF. So, we create a new relation reflecting this:
Job_Class_Chg(JOB_CLASS, chg_per_hr)

...giving it the determinant of the transitive dependency as its primary key.

And we need to change Employee to remove the attribute chg_per_hr, and make job_class a 
foreign key referencing this new relation:
Employee(EMPL_NUM, empl_name, job_class)
   foreign key (job_class) references job_class_chg

The resulting collection of relations is:
Project(PROJ_NUM, proj_name)

Job_Class_Chg(JOB_CLASS, chg_per_hr)

Employee(EMPL_NUM, empl_name, job_class)
   foreign key (job_class) references job_class_chg

Project_Work(PROJ_NUM, EMPL_NUM, hrs)
   foreign key (proj_num) references project,
   foreign key (empl_num) references employee

...which is now in 3NF.

See how this reduces modification anomalies? If I want to note that a job_class of CS should have 
a chg_per_hr of 75, I can now do so: simply add that row to Job_class_chg. And no employee 
deletion can cause the loss of a job_class/chg_per_hr pair.

So, tables in 3NF do not have modification anomalies due to transitive dependencies.

A Few Words on those Other Normal Forms...
Usually, this is considered sufficient -- the remaining modification anomalies are rare enough that 3NF 
is usually sufficient for operational databases. Most database textbooks include some discussion of the 
other normal forms, however, if you are interested (and one can certainly google the others for further 
information as well). But, here is a quick summary:

• Boyce-Codd Normal Form (BCNF):

– a relation in which every determinant in that table is a candidate key

• Fourth Normal Form (4NF):
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– a relation in 3NF that includes no multiple sets of multivalued dependencies

– (that is, you cannot have two different attributes that are multi-valued with respect to a third 
attribute)

• Fifth Normal Form (5NF):

– this normal form has to do with relations that can be divided into sub-relations, but then cannot 
be reconstructed; that's as far as we'll go with that.

A Few Normalization Caveats and Final Comments
Sometimes, we make the conscious decision not to take relations all the way to 3NF. The best example 
I've heard of this involves zip codes: zip codes, in reality, are dependent upon street address and city. 
However, unless one's scenario is a post office or heavy-duty delivery company, one usually doesn't 
break this transitive dependency into its own relation. In many scenarios' databases and database 
applications, you don't really worry about whether you will lose the connection between a street 
address/city and the corresponding zip code due to the deletion of some item that has address attributes 
amongst its attributes -- likewise, you probably don't try to just store a street/city and zip by 
themselves. So, since these are not modification anomalies of concern in many scenarios, we often do 
not break out this transitive dependency. This is a useful point to keep in mind regarding normalization.

When one is designing a read-only data warehouse -- which is beyond the scope of this course -- the 
different needs of this kind of data repository actually may lead to one deciding to denormalize some 
sets of relations, to deliberately take those sets of relations back to a lower normal form! Because our 
interest in this course is in operational databases, we will not do such denormalization; however, it is 
good to know that this is sometimes done for other data repositories with different goals and needs.

Finally, after we have discussed converting a database model into a database design during the next two 
lectures, I hope you will see that following that model-then-design process should result in a set of 
relations that are often already in 3NF, if the original model is sound, (except perhaps for transitive 
dependencies we don't really care about, such as the (street_addr, city) -> zip_code 
dependency described above). What Kroenke calls "themes" are probably analogous to entity classes in 
an entity-relationship diagram -- if your ER model for a scenario really includes all of the significant 
entities within a scenario, then its corresponding design has a pretty good chance of being in 3NF. 

You might still walk through a normalization process with your resulting design's relations to make 
sure that they are indeed in 3NF (or as close to that as you care to be), as a useful double-check on your 
model; when might you discover additional normalization as being needed? I can think of several 
possibilities: 

• if you have one or more entities embedded within an association entity (often a significant-
transaction or significant-action entity), you would likely have one or more partial dependencies in 
the resulting set of relations;

• if you have an entity accidentally embedded within another entity, you would likely have a transitive 
dependency in the resulting set of relations.

Going through the normalization process with your resulting database design thus might end up 
improving/clarifying your underlying ER model.
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