
CS 325 - DB Reading Packet 8: "Database design, part 2" p. 1
Sharon Tuttle - last modified: 2021-08-31

CS 325 - DB Reading Packet 8: "Database design, part 2"

Sources:
* Ricardo, "Databases Illuminated", Jones and Bartlett.
* Kroenke, "Database Processing: Fundamentals, Design, and Implementation", 7th edition, Prentice

Hall, 1999.
* Rob and Coronel, "Database Systems: Design, Implementation, and Management", 3rd Edition,

International Thomson Publishing, 1997.
* Connolly and Begg, "Database Systems: A Practical Approach to Design Implementation and

Management", 3rd Edition, Addison-Wesley.
* Korth and Silberschatz, "Database System Concepts"
* Sunderraman, "Oracle 9i Programming: A Primer", Addison-Wesley.
* Ullman, "Principles of Database Systems", 2nd Edition, Computer Science Press.

BASICS of DATABASE DESIGN, Part 2
What we have discussed so far is the large majority of what one would encounter in converting
database models to database designs/schemas. Today we add a few more pieces that you should also
know how to handle during the database design process.

Handling Supertype/Subtype Entity Classes
As supertype/subtype entity classes are not infrequent, it is useful to know how to convert them into
appropriate tables in a database design/schema.

Recall these examples of supertype and subtype entity classes from earlier in the semester (now with
attribute information included):

Account Savings-Account Checking-Account
------- --------------- ----------------
ACCT_NUM Interest_rate Min_balance
Date_opened Bonus_feature (MV) Per_ck_charge
Balance

Account

Savings-account Checking-account

d

CS 325 - DB Reading Packet 8: "Database design, part 2" p. 1
Sharon Tuttle - last modified: 2021-08-31

CS 325 - DB Reading Packet 8: "Database design, part 2"

Sources:
* Ricardo, "Databases Illuminated", Jones and Bartlett.
* Kroenke, "Database Processing: Fundamentals, Design, and Implementation", 7th edition, Prentice

Hall, 1999.
* Rob and Coronel, "Database Systems: Design, Implementation, and Management", 3rd Edition,

International Thomson Publishing, 1997.
* Connolly and Begg, "Database Systems: A Practical Approach to Design Implementation and

Management", 3rd Edition, Addison-Wesley.
* Korth and Silberschatz, "Database System Concepts"
* Sunderraman, "Oracle 9i Programming: A Primer", Addison-Wesley.
* Ullman, "Principles of Database Systems", 2nd Edition, Computer Science Press.

BASICS of DATABASE DESIGN, Part 2
What we have discussed so far is the large majority of what one would encounter in converting
database models to database designs/schemas. Today we add a few more pieces that you should also
know how to handle during the database design process.

Handling Supertype/Subtype Entity Classes
As supertype/subtype entity classes are not infrequent, it is useful to know how to convert them into
appropriate tables in a database design/schema.

Recall these examples of supertype and subtype entity classes from earlier in the semester (now with
attribute information included):

Account Savings-Account Checking-Account
------- --------------- ----------------
ACCT_NUM Interest_rate Min_balance
Date_opened Bonus_feature (MV) Per_ck_charge
Balance

Account

Savings-account Checking-account

d

CS 325 - DB Reading Packet 8: "Database design, part 2" p. 2
Sharon Tuttle - last modified: 2021-08-31

Univ-person Student Instructor
----------- ------- ----------
UNIV_ID Gpa is_W4_on_file
Last_name Semester_matricd Date_first_hired
First_name Semester_graduated
Campus_email

Here are the steps for handling supertype/subtype entity classes in the database design process:

* create a "base" table for each entity class (the supertype AND each subtype)

* determine an appropriate primary key for the supertype entity's "base" table

* add the supertype entity's "base" table's primary key to EACH of the subtype entity's "base" tables,
making it the primary key for those tables as well, AND making it a foreign key referencing the
supertype entity's "base" table

* to make certain queries easier:
* if the subtype entities are disjoint subtypes (d on the circle in the ER Model), then each

supertype instance is at most one of the subtype instances. Add a *_type attribute to the
supertype entity's "base" table, whose domain is some code or value indicating of WHICH
subtype a supertype instance is.

* if the subtype entities are overlapping subtypes (o on the circle in the ER Model), then each
supertyle instance can be more than one of the subtype instances. Add an attribute is_* to the
supertype entity's "base" table for each subtype entity, a yes/no, 1/0, or otherise "binary"-
domained attribute that indicates if the supertype instance is of that subtype as well.

* handle the remaining attributes and any other relationships involving these entity classes following
the normal design process

Let's walk through these steps for our two example models.

Univ-person

Student Instructor

o

CS 325 - DB Reading Packet 8: "Database design, part 2" p. 2
Sharon Tuttle - last modified: 2021-08-31

Univ-person Student Instructor
----------- ------- ----------
UNIV_ID Gpa is_W4_on_file
Last_name Semester_matricd Date_first_hired
First_name Semester_graduated
Campus_email

Here are the steps for handling supertype/subtype entity classes in the database design process:

* create a "base" table for each entity class (the supertype AND each subtype)

* determine an appropriate primary key for the supertype entity's "base" table

* add the supertype entity's "base" table's primary key to EACH of the subtype entity's "base" tables,
making it the primary key for those tables as well, AND making it a foreign key referencing the
supertype entity's "base" table

* to make certain queries easier:
* if the subtype entities are disjoint subtypes (d on the circle in the ER Model), then each

supertype instance is at most one of the subtype instances. Add a *_type attribute to the
supertype entity's "base" table, whose domain is some code or value indicating of WHICH
subtype a supertype instance is.

* if the subtype entities are overlapping subtypes (o on the circle in the ER Model), then each
supertyle instance can be more than one of the subtype instances. Add an attribute is_* to the
supertype entity's "base" table for each subtype entity, a yes/no, 1/0, or otherise "binary"-
domained attribute that indicates if the supertype instance is of that subtype as well.

* handle the remaining attributes and any other relationships involving these entity classes following
the normal design process

Let's walk through these steps for our two example models.

Univ-person

Student Instructor

o

CS 325 - DB Reading Packet 8: "Database design, part 2" p. 3
Sharon Tuttle - last modified: 2021-08-31

Accounts-model example
Consider the Account/Savings-Account/Checking-Account scenario first.

Account Savings-Account Checking-Account
------- --------------- ----------------
ACCT_NUM Interest_rate Min_balance
Date_opened Bonus_feature (MV) Per_ck_charge
Balance

First we create "base" tables for each supertype and subtype entity class:

Account(
Savings_Account(
Checking_Account(

Then we determine an appropriate primary key for the supertype entity's "base" table:

Account(ACCT_NUM,
Savings_Account(
Checking_Account(

... and add the supertype entity's "base" table's primary key to EACH of the subtype entity's "base"
tables, making it the primary key for those tables as well, AND making it a foreign key referencing the
supertype entity's "base" table:

Account(ACCT_NUM,

Savings_Account(ACCT_NUM,
 foreign key (acct_num) references Account

Checking_Account(ACCT_NUM,
 foreign key (acct_num) references Account

Finally, since these are disjoint subtypes (note the d in the circle in its model), add an acct_type

Account

Savings-account Checking-account

d

CS 325 - DB Reading Packet 8: "Database design, part 2" p. 3
Sharon Tuttle - last modified: 2021-08-31

Accounts-model example
Consider the Account/Savings-Account/Checking-Account scenario first.

Account Savings-Account Checking-Account
------- --------------- ----------------
ACCT_NUM Interest_rate Min_balance
Date_opened Bonus_feature (MV) Per_ck_charge
Balance

First we create "base" tables for each supertype and subtype entity class:

Account(
Savings_Account(
Checking_Account(

Then we determine an appropriate primary key for the supertype entity's "base" table:

Account(ACCT_NUM,
Savings_Account(
Checking_Account(

... and add the supertype entity's "base" table's primary key to EACH of the subtype entity's "base"
tables, making it the primary key for those tables as well, AND making it a foreign key referencing the
supertype entity's "base" table:

Account(ACCT_NUM,

Savings_Account(ACCT_NUM,
 foreign key (acct_num) references Account

Checking_Account(ACCT_NUM,
 foreign key (acct_num) references Account

Finally, since these are disjoint subtypes (note the d in the circle in its model), add an acct_type

Account

Savings-account Checking-account

d

CS 325 - DB Reading Packet 8: "Database design, part 2" p. 4
Sharon Tuttle - last modified: 2021-08-31

attribute to Account's "base" table, whose domain will indicate whether a particular Account row is a
Savings account or a Checking account:

Account(ACCT_NUM, acct_type

Savings_Account(ACCT_NUM,
 foreign key (acct_num) references Account

Checking_Account(ACCT_NUM,
 foreign key (acct_num) references Account

The remaining single-valued attributes should be placed in the associated entity's "base" table:

Account(ACCT_NUM, acct_type, date_opened, balance,

Savings_Account(ACCT_NUM, interest_rate,
 foreign key (acct_num) references Account

Checking_Account(ACCT_NUM, min_balance, per_ck_charge,
 foreign key (acct_num) references Account

...which leaves entity Savings-account's multi-valued attribute Bonus_features. But one just follows the
normal design process for this at this point, creating a new table for this multi-valued attribute, whose
primary key is a composite primary key consisting of the primary key of the entity's "base" table and
the multi-valued attribute, and with that primary key from the entity's "base" table defined to be a
foreign key back to the entity's "base" table:

Account(ACCT_NUM, acct_type, date_opened, balance)

Savings_Account(ACCT_NUM, interest_rate)
 foreign key (acct_num) references Account

Savings_Acct_Bonuses(ACCT_NUM, BONUS_FEATURE)
 foreign key (acct_num) references Savings

Checking_Account(ACCT_NUM, min_balance, per_ck_charge)
 foreign key (acct_num) references Account

In particular, note that new table Savings_Acct_Bonuses's foreign key acct_num references the Savings
table, not the Account table; it is quite all right to reference a primary key that is itself a foreign key. It
would not be the same to reference the Account table instead, in this case -- a savings account bonus
feature must be an attribute of a savings account in particular, not just any account. Having the foreign
key reference the Savings table will ensure that this is so, thanks to the referential integrity checking
enforced by the DBMS by declaring the foreign key in this way.

(The same principle would apply if, for example, Savings were a parent (the 1 side) in a 1:N

CS 325 - DB Reading Packet 8: "Database design, part 2" p. 4
Sharon Tuttle - last modified: 2021-08-31

attribute to Account's "base" table, whose domain will indicate whether a particular Account row is a
Savings account or a Checking account:

Account(ACCT_NUM, acct_type

Savings_Account(ACCT_NUM,
 foreign key (acct_num) references Account

Checking_Account(ACCT_NUM,
 foreign key (acct_num) references Account

The remaining single-valued attributes should be placed in the associated entity's "base" table:

Account(ACCT_NUM, acct_type, date_opened, balance,

Savings_Account(ACCT_NUM, interest_rate,
 foreign key (acct_num) references Account

Checking_Account(ACCT_NUM, min_balance, per_ck_charge,
 foreign key (acct_num) references Account

...which leaves entity Savings-account's multi-valued attribute Bonus_features. But one just follows the
normal design process for this at this point, creating a new table for this multi-valued attribute, whose
primary key is a composite primary key consisting of the primary key of the entity's "base" table and
the multi-valued attribute, and with that primary key from the entity's "base" table defined to be a
foreign key back to the entity's "base" table:

Account(ACCT_NUM, acct_type, date_opened, balance)

Savings_Account(ACCT_NUM, interest_rate)
 foreign key (acct_num) references Account

Savings_Acct_Bonuses(ACCT_NUM, BONUS_FEATURE)
 foreign key (acct_num) references Savings

Checking_Account(ACCT_NUM, min_balance, per_ck_charge)
 foreign key (acct_num) references Account

In particular, note that new table Savings_Acct_Bonuses's foreign key acct_num references the Savings
table, not the Account table; it is quite all right to reference a primary key that is itself a foreign key. It
would not be the same to reference the Account table instead, in this case -- a savings account bonus
feature must be an attribute of a savings account in particular, not just any account. Having the foreign
key reference the Savings table will ensure that this is so, thanks to the referential integrity checking
enforced by the DBMS by declaring the foreign key in this way.

(The same principle would apply if, for example, Savings were a parent (the 1 side) in a 1:N

CS 325 - DB Reading Packet 8: "Database design, part 2" p. 5
Sharon Tuttle - last modified: 2021-08-31

relationship -- then its primary key Acct_num would be placed in the child entity's "base" table as a
foreign key referencing Savings. And if Checking were involved in a N:M relationship with another
entity, then its primary key Acct_num would be placed in the new intersection table created as a result,
also as a foreign key referencing Checking. Make sure that this is clear to you!)

If we had further relationships between these entities and other entities, we would handle each of them
in turn. But as there are no other entities here, the database design/schema is complete (in terms of the
table structures and relationships, anyway).

Univ-person model example
Now, for our other example supertype/subtypes model:

Univ-person Student Instructor
----------- ------- ----------
UNIV_ID Gpa is_W4_on_file
Last_name Semester_matricd Semester_hired (MV)
First_name Semester_graduated
Campus_email

First we create "base" tables for each supertype and subtype entity class:

Univ_person(
Student(
Instructor(

Then we determine an appropriate primary key for the supertype entity's "base" table:

Univ_person(UNIV_ID,
Student(
Instructor(

... and add the supertype entity's "base" table's primary key to EACH of the subtype entity's "base"
tables, making it the primary key for those tables as well, AND making it a foreign key referencing the
supertype entity's "base" table:

Univ_person(UNIV_ID,

Univ-person

Student Instructor

o

CS 325 - DB Reading Packet 8: "Database design, part 2" p. 5
Sharon Tuttle - last modified: 2021-08-31

relationship -- then its primary key Acct_num would be placed in the child entity's "base" table as a
foreign key referencing Savings. And if Checking were involved in a N:M relationship with another
entity, then its primary key Acct_num would be placed in the new intersection table created as a result,
also as a foreign key referencing Checking. Make sure that this is clear to you!)

If we had further relationships between these entities and other entities, we would handle each of them
in turn. But as there are no other entities here, the database design/schema is complete (in terms of the
table structures and relationships, anyway).

Univ-person model example
Now, for our other example supertype/subtypes model:

Univ-person Student Instructor
----------- ------- ----------
UNIV_ID Gpa is_W4_on_file
Last_name Semester_matricd Semester_hired (MV)
First_name Semester_graduated
Campus_email

First we create "base" tables for each supertype and subtype entity class:

Univ_person(
Student(
Instructor(

Then we determine an appropriate primary key for the supertype entity's "base" table:

Univ_person(UNIV_ID,
Student(
Instructor(

... and add the supertype entity's "base" table's primary key to EACH of the subtype entity's "base"
tables, making it the primary key for those tables as well, AND making it a foreign key referencing the
supertype entity's "base" table:

Univ_person(UNIV_ID,

Univ-person

Student Instructor

o

CS 325 - DB Reading Packet 8: "Database design, part 2" p. 6
Sharon Tuttle - last modified: 2021-08-31

Student(UNIV_ID,
 foreign key (univ_id) references Univ_person

Instructor(UNIV_ID,
 foreign key (univ_id) references Univ_person

Finally, since these are overlapping subtypes (note the o in the circle in its model), add is_student and
is_instructor attributes to Univ_person's "base" table, whose domains are 'y'/'n' or 1/0 or some other
suitable domain to indicate whether each Univ_person row is also a student, and whether each
Univ_person row is also an instructor:

Univ_person(UNIV_ID, is_student, is_faculty,

Student(UNIV_ID,
 foreign key (univ_id) references Univ_person

Instructor(UNIV_ID,
 foreign key (univ_id) references Univ_person

The remaining single-valued attributes should be placed in the associated entity's "base" table:

Univ_person(UNIV_ID, is_student, is_faculty, last_name,
 first_name, campus_email,

Student(UNIV_ID, gpa, semester_matricd, semester_graduated,
 foreign key (univ_id) references Univ_person

Instructor(UNIV_ID, is_W4_on_file,
 foreign key (univ_id) references Univ_person

...which leaves entity Instructor's multi-valued attribute Semester_hired. But one just follows the
normal design process for this at this point, creating a new table for this multi-valued attribute, whose
primary key is a composite primary key consisting of the primary key of the entity's "base" table and
the multi-valued attribute, and with that primary key from the entity's "base" table defined to be a
foreign key back to the entity's "base" table:

Univ_person(UNIV_ID, is_student, is_faculty, last_name,
 first_name, campus_email)

Student(UNIV_ID, gpa, semester_matricd, semester_graduated)
 foreign key (univ_id) references Univ_person

Instructor(UNIV_ID, is_W4_on_file)
 foreign key (univ_id) references Univ_person

Instructor_Semesters(UNIV_ID, SEMESTER_HIRED)

CS 325 - DB Reading Packet 8: "Database design, part 2" p. 6
Sharon Tuttle - last modified: 2021-08-31

Student(UNIV_ID,
 foreign key (univ_id) references Univ_person

Instructor(UNIV_ID,
 foreign key (univ_id) references Univ_person

Finally, since these are overlapping subtypes (note the o in the circle in its model), add is_student and
is_instructor attributes to Univ_person's "base" table, whose domains are 'y'/'n' or 1/0 or some other
suitable domain to indicate whether each Univ_person row is also a student, and whether each
Univ_person row is also an instructor:

Univ_person(UNIV_ID, is_student, is_faculty,

Student(UNIV_ID,
 foreign key (univ_id) references Univ_person

Instructor(UNIV_ID,
 foreign key (univ_id) references Univ_person

The remaining single-valued attributes should be placed in the associated entity's "base" table:

Univ_person(UNIV_ID, is_student, is_faculty, last_name,
 first_name, campus_email,

Student(UNIV_ID, gpa, semester_matricd, semester_graduated,
 foreign key (univ_id) references Univ_person

Instructor(UNIV_ID, is_W4_on_file,
 foreign key (univ_id) references Univ_person

...which leaves entity Instructor's multi-valued attribute Semester_hired. But one just follows the
normal design process for this at this point, creating a new table for this multi-valued attribute, whose
primary key is a composite primary key consisting of the primary key of the entity's "base" table and
the multi-valued attribute, and with that primary key from the entity's "base" table defined to be a
foreign key back to the entity's "base" table:

Univ_person(UNIV_ID, is_student, is_faculty, last_name,
 first_name, campus_email)

Student(UNIV_ID, gpa, semester_matricd, semester_graduated)
 foreign key (univ_id) references Univ_person

Instructor(UNIV_ID, is_W4_on_file)
 foreign key (univ_id) references Univ_person

Instructor_Semesters(UNIV_ID, SEMESTER_HIRED)

CS 325 - DB Reading Packet 8: "Database design, part 2" p. 7
Sharon Tuttle - last modified: 2021-08-31

 foreign key (univ_id) references Instructor

And so the new Instructor_Semesters table's foreign key univ_id references the Instructor table, since
semester_hired is an attribute of the entity class Instructor.

If we had further relationships between these entities and other entities, we would handle each of them
in turn. But as there are no other entities here, the database design/schema is complete (in terms of the
table structures and relationships, anyway).

Comments on a Supertype/Subtypes variant: UNIONS
Ricardo (p. 384) mentions a potentially-useful supertype/subtypes variant that would be transformed
into a design in a slightly different fashion.

Sometimes you have entity classes that are really quite distinct -- they have separate identifying
attributes, for example, and perhaps no overlap in terms of attributes -- that nevertheless share a
relationship. Ricardo calls this a Union -- it could be "drawn" like a supertype/subtype, except with a U
on the circle. You'd notice here that the "subtype" entity classes feature identifying attributes, and that
the "supertype" entity class has few or no attributes of its own, but participates in one or more
relationships.

How would this be turned into a design differently? Since the "subtype" entities here really each have
their own identity, then the primary keys for their "base" tables should be distinct from each other and
from the "base" table for the "supertype". But the primary key for the "supertype's" "base" table would
still be placed in each of the "subtypes" "base" tables, but *just* as a foreign key back to the
"supertype's" "base" table (not as part of the "subtypes" "base" tables' primary keys). And, like for the
disjoint subtypes case, you would add a *_type attribute to the "supertype" "base" table as well.

Univ-sponsor model example
As an example, consider a university-based scenario in which there are entity classes for campus clubs,
campus teams, campus departments, and campus events, and a business rule noting that campus events
must be sponsored by either a club, a team, or a department. You have a situation where each event
needs to be related to a club *or* a team *or* a department, which is awkward to model until you
consider this Union approach -- but with that approach, you can recognize that a Sponsor entity class
would make things much cleaner:

Sponsor

Team Dept

u

Club

sponsors

Event
N1

CS 325 - DB Reading Packet 8: "Database design, part 2" p. 7
Sharon Tuttle - last modified: 2021-08-31

 foreign key (univ_id) references Instructor

And so the new Instructor_Semesters table's foreign key univ_id references the Instructor table, since
semester_hired is an attribute of the entity class Instructor.

If we had further relationships between these entities and other entities, we would handle each of them
in turn. But as there are no other entities here, the database design/schema is complete (in terms of the
table structures and relationships, anyway).

Comments on a Supertype/Subtypes variant: UNIONS
Ricardo (p. 384) mentions a potentially-useful supertype/subtypes variant that would be transformed
into a design in a slightly different fashion.

Sometimes you have entity classes that are really quite distinct -- they have separate identifying
attributes, for example, and perhaps no overlap in terms of attributes -- that nevertheless share a
relationship. Ricardo calls this a Union -- it could be "drawn" like a supertype/subtype, except with a U
on the circle. You'd notice here that the "subtype" entity classes feature identifying attributes, and that
the "supertype" entity class has few or no attributes of its own, but participates in one or more
relationships.

How would this be turned into a design differently? Since the "subtype" entities here really each have
their own identity, then the primary keys for their "base" tables should be distinct from each other and
from the "base" table for the "supertype". But the primary key for the "supertype's" "base" table would
still be placed in each of the "subtypes" "base" tables, but *just* as a foreign key back to the
"supertype's" "base" table (not as part of the "subtypes" "base" tables' primary keys). And, like for the
disjoint subtypes case, you would add a *_type attribute to the "supertype" "base" table as well.

Univ-sponsor model example
As an example, consider a university-based scenario in which there are entity classes for campus clubs,
campus teams, campus departments, and campus events, and a business rule noting that campus events
must be sponsored by either a club, a team, or a department. You have a situation where each event
needs to be related to a club *or* a team *or* a department, which is awkward to model until you
consider this Union approach -- but with that approach, you can recognize that a Sponsor entity class
would make things much cleaner:

Sponsor

Team Dept

u

Club

sponsors

Event
N1

CS 325 - DB Reading Packet 8: "Database design, part 2" p. 8
Sharon Tuttle - last modified: 2021-08-31

Sponsor Club Team Dept Event
------- -------- -------- --------- -----
 CLUB_NUM TEAM_CODE DEPT_CODE EVENT_NUM
 Club_Name Sport Dept_title Event_title
 Is_active Season Office_num Event_date

First we create "base" tables for each supertype and subtype entity class (and for Event, too, while
we're at it):

Sponsor(
Club(
Team(
Dept(
Event(

Then we determine an appropriate primary keys for these. The U in the circle and the identifying
attributes for the subtype entities lead us to give each subtype's "base" table its "own" primary key, and
to create a primary key for Sponsor distinct from these primary keys. (We also determine an
appropriate primary key for Event while we're at it).

Sponsor(SPONS_NUM,
Club(CLUB_NUM,
Team(TEAM_CODE,
Dept(DEPT_CODE,
Event(EVENT_NUM,

Because this is a Union situation, we will add Sponsor's primary key to the subtypes' "base" tables, but
only as a foreign key (not also as their primary key, as would be the case for d or o supertype/subtype
entity classes).

Sponsor(SPONS_NUM,
Club(CLUB_NUM, spons_num,
 foreign key (spons_num) references Sponsor
Team(TEAM_CODE, spons_num,
 foreign key (spons_num) references Sponsor
Dept(DEPT_CODE, spons_num,
 foreign key (spons_num) references Sponsor
Event(EVENT_NUM,

Because this is a Union situation, then as in the case of disjoint subtypes, we add a spons_type
attribute to Sponsor's "base" table, whose domain will indicate whether a particular Sponsor is a Club
or a Team or a Dept:

Sponsor(SPONS_NUM, spons_type,
Club(CLUB_NUM, spons_num,
 foreign key (spons_num) references Sponsor

CS 325 - DB Reading Packet 8: "Database design, part 2" p. 8
Sharon Tuttle - last modified: 2021-08-31

Sponsor Club Team Dept Event
------- -------- -------- --------- -----
 CLUB_NUM TEAM_CODE DEPT_CODE EVENT_NUM
 Club_Name Sport Dept_title Event_title
 Is_active Season Office_num Event_date

First we create "base" tables for each supertype and subtype entity class (and for Event, too, while
we're at it):

Sponsor(
Club(
Team(
Dept(
Event(

Then we determine an appropriate primary keys for these. The U in the circle and the identifying
attributes for the subtype entities lead us to give each subtype's "base" table its "own" primary key, and
to create a primary key for Sponsor distinct from these primary keys. (We also determine an
appropriate primary key for Event while we're at it).

Sponsor(SPONS_NUM,
Club(CLUB_NUM,
Team(TEAM_CODE,
Dept(DEPT_CODE,
Event(EVENT_NUM,

Because this is a Union situation, we will add Sponsor's primary key to the subtypes' "base" tables, but
only as a foreign key (not also as their primary key, as would be the case for d or o supertype/subtype
entity classes).

Sponsor(SPONS_NUM,
Club(CLUB_NUM, spons_num,
 foreign key (spons_num) references Sponsor
Team(TEAM_CODE, spons_num,
 foreign key (spons_num) references Sponsor
Dept(DEPT_CODE, spons_num,
 foreign key (spons_num) references Sponsor
Event(EVENT_NUM,

Because this is a Union situation, then as in the case of disjoint subtypes, we add a spons_type
attribute to Sponsor's "base" table, whose domain will indicate whether a particular Sponsor is a Club
or a Team or a Dept:

Sponsor(SPONS_NUM, spons_type,
Club(CLUB_NUM, spons_num,
 foreign key (spons_num) references Sponsor

CS 325 - DB Reading Packet 8: "Database design, part 2" p. 9
Sharon Tuttle - last modified: 2021-08-31

Team(TEAM_CODE, spons_num,
 foreign key (spons_num) references Sponsor
Dept(DEPT_CODE, spons_num,
 foreign key (spons_num) references Sponsor
Event(EVENT_NUM,

All of the remaining attributes in the model happen to be single-valued, so each should be placed in the
associated entity's "base" table. (If there were multi-valued attributes, they would each be the basis of a
new table, as usual.)

Sponsor(SPONS_NUM, spons_type,
Club(CLUB_NUM, spons_num, club_name, is_active,
 foreign key (spons_num) references Sponsor
Team(TEAM_CODE, spons_num, sport, season,
 foreign key (spons_num) references Sponsor
Dept(DEPT_CODE, spons_num, dept_title, office_num,
 foreign key (spons_num) references Sponsor
Event(EVENT_NUM, event_title, event_date,

And of course we must remember to handle the relationship between Event and Sponsor -- since
Sponsor is the parent in the Sponsor-sponsors-Event relationship, Sponsor's primary key will be added
to Event's "base" table as a foreign key:

Sponsor(SPONS_NUM, spons_type)

Club(CLUB_NUM, spons_num, club_name, is_active)
 foreign key (spons_num) references Sponsor

Team(TEAM_CODE, spons_num, sport, season)
 foreign key (spons_num) references Sponsor

Dept(DEPT_CODE, spons_num, dept_title, office_num)
 foreign key (spons_num) references Sponsor

Event(EVENT_NUM, event_title, event_date, spons_num)
 foreign key (spons_num) references Sponsor

Since we've now taken care of all relationships and all entity classes, the database design/schema is
complete (in terms of the table structures and relationships, anyway).

Handling Association Entities
Sometimes you find, in a model, an entity that associates two or more entities in a transaction "central"
or important to that scenario that has attributes of its own, but doesn't seem to have any identifying
attributes, usually because it really gets its identity from the two or more entities involved in that
transaction. Such an entity is called an association entity. It isn't depicted any differently from other

CS 325 - DB Reading Packet 8: "Database design, part 2" p. 9
Sharon Tuttle - last modified: 2021-08-31

Team(TEAM_CODE, spons_num,
 foreign key (spons_num) references Sponsor
Dept(DEPT_CODE, spons_num,
 foreign key (spons_num) references Sponsor
Event(EVENT_NUM,

All of the remaining attributes in the model happen to be single-valued, so each should be placed in the
associated entity's "base" table. (If there were multi-valued attributes, they would each be the basis of a
new table, as usual.)

Sponsor(SPONS_NUM, spons_type,
Club(CLUB_NUM, spons_num, club_name, is_active,
 foreign key (spons_num) references Sponsor
Team(TEAM_CODE, spons_num, sport, season,
 foreign key (spons_num) references Sponsor
Dept(DEPT_CODE, spons_num, dept_title, office_num,
 foreign key (spons_num) references Sponsor
Event(EVENT_NUM, event_title, event_date,

And of course we must remember to handle the relationship between Event and Sponsor -- since
Sponsor is the parent in the Sponsor-sponsors-Event relationship, Sponsor's primary key will be added
to Event's "base" table as a foreign key:

Sponsor(SPONS_NUM, spons_type)

Club(CLUB_NUM, spons_num, club_name, is_active)
 foreign key (spons_num) references Sponsor

Team(TEAM_CODE, spons_num, sport, season)
 foreign key (spons_num) references Sponsor

Dept(DEPT_CODE, spons_num, dept_title, office_num)
 foreign key (spons_num) references Sponsor

Event(EVENT_NUM, event_title, event_date, spons_num)
 foreign key (spons_num) references Sponsor

Since we've now taken care of all relationships and all entity classes, the database design/schema is
complete (in terms of the table structures and relationships, anyway).

Handling Association Entities
Sometimes you find, in a model, an entity that associates two or more entities in a transaction "central"
or important to that scenario that has attributes of its own, but doesn't seem to have any identifying
attributes, usually because it really gets its identity from the two or more entities involved in that
transaction. Such an entity is called an association entity. It isn't depicted any differently from other

CS 325 - DB Reading Packet 8: "Database design, part 2" p. 10
Sharon Tuttle - last modified: 2021-08-31

entities within an ER diagram, except perhaps for its lack of any identifying attributes within its
attribute list. (Remember, entity attribute lists do not contain any relationship-related information
at the model level.)

So, why mention association entities here? Because there are two common options for handling their
primary key at the database design stage:

1) you might introduce a primary key into the "base" table for this entity (as is always an option); or,

2) if the entities that seem to give an instance of this association entity its "identity" are parents in 1:N
relationships with this association entity, then those parents' primary keys that would already be
added to the association entity's "base" table as foreign keys because of those 1:N relationships
might also be made a composite primary key for the association entity's "base" table.

Why might you choose one option over another? If the transaction is very "central" to the scenario, you
might lean toward giving the association entity's "base" table its "own" primary key. If that association
entity is the parent in any 1:N relationships, that would be further encouragement to give the
association entity's "base" table its "own" primary key, because single attribute foreign keys are just a
little more convenient to work with. (Recall that, in the design process for a 1:N relationship, the
primary key of the parent's "base" table is placed in the child's "base" table as a foreign key. You can
have multi-attribute foreign keys, but they aren't very common in practice.) But for an association
entity that is more minor, not involved in other relationships, it would also be a reasonable choice to
simply go with option 2), with the two-attribute primary key. The resulting table looks very much like
an intersection table with one or more extra attributes.

Flight model example
Imagine a scenario such as the following:

 Flight Flight_reservation Customer
 ----------- --------------------- -------------
 FLIGHT_NUM Date_made CUST_NUM
 Flight_date Cust_lname
 Exp_departure Cust_fname
 Exp_arrival
 Actl_departure
 Actl_arrival

Using Option 1) above, you would end up with the tables:

Flight(FLIGHT_NUM, flight_date, exp_departure, exp_arrival,
 actl_departure, actl_arrival)

Flight Flight_reservation Customer

for by

1 1NN

CS 325 - DB Reading Packet 8: "Database design, part 2" p. 10
Sharon Tuttle - last modified: 2021-08-31

entities within an ER diagram, except perhaps for its lack of any identifying attributes within its
attribute list. (Remember, entity attribute lists do not contain any relationship-related information
at the model level.)

So, why mention association entities here? Because there are two common options for handling their
primary key at the database design stage:

1) you might introduce a primary key into the "base" table for this entity (as is always an option); or,

2) if the entities that seem to give an instance of this association entity its "identity" are parents in 1:N
relationships with this association entity, then those parents' primary keys that would already be
added to the association entity's "base" table as foreign keys because of those 1:N relationships
might also be made a composite primary key for the association entity's "base" table.

Why might you choose one option over another? If the transaction is very "central" to the scenario, you
might lean toward giving the association entity's "base" table its "own" primary key. If that association
entity is the parent in any 1:N relationships, that would be further encouragement to give the
association entity's "base" table its "own" primary key, because single attribute foreign keys are just a
little more convenient to work with. (Recall that, in the design process for a 1:N relationship, the
primary key of the parent's "base" table is placed in the child's "base" table as a foreign key. You can
have multi-attribute foreign keys, but they aren't very common in practice.) But for an association
entity that is more minor, not involved in other relationships, it would also be a reasonable choice to
simply go with option 2), with the two-attribute primary key. The resulting table looks very much like
an intersection table with one or more extra attributes.

Flight model example
Imagine a scenario such as the following:

 Flight Flight_reservation Customer
 ----------- --------------------- -------------
 FLIGHT_NUM Date_made CUST_NUM
 Flight_date Cust_lname
 Exp_departure Cust_fname
 Exp_arrival
 Actl_departure
 Actl_arrival

Using Option 1) above, you would end up with the tables:

Flight(FLIGHT_NUM, flight_date, exp_departure, exp_arrival,
 actl_departure, actl_arrival)

Flight Flight_reservation Customer

for by

1 1NN

CS 325 - DB Reading Packet 8: "Database design, part 2" p. 11
Sharon Tuttle - last modified: 2021-08-31

Customer(CUST_NUM, cust_lname, cust_fname)

Flight_reservation(RES_NUM, date_made, flight_num, cust_num)
 foreign key (flight_num) references flight,
 foreign key (cust_num) references customer

Using Option 2) above, you would end up with the tables:

Flight(FLIGHT_NUM, flight_date, exp_departure, exp_arrival,
 actl_departure, actl_arrival)

Customer(CUST_NUM, cust_lname, cust_fname)

Flight_reservation(FLIGHT_NUM, CUST_NUM, date_made)
 foreign key (flight_num) references flight,
 foreign key (cust_num) references customer

Handling Weak Entities
The design process for weak entities is really mostly a special case of handling 1:1 or 1:N relationships.
(Since weak entities tend to be, by definition, identity-dependent upon the entity class they are related
to, it would be odd to have one involved in an N:M relationship.)

Just following the normal "rules" for handling 1:N and 1:1 relationships, you will usually end up
putting the primary key of the entity's "base" table that this weak entity is dependent upon into the
weak entity's "base" table as a foreign key -- in the 1:N case, the weak entity is usually the child, and in
the 1:1 case, the weak entity usually must be involved in the relationship.

So, why mention this at all? Because, since a weak entity is so dependent on another entity, it is quite
common for the weak entity's "base" table to have a primary key based on that other entity's "base"
table's primary key. If the relationship between the weak entity and the other entity is 1:1, and the
weak entity doesn't have suitable identifying attributes, then the other entity's "base" table's primary
key that is inserted into the weak entity's "base" table to serve as a foreign key may also be used as the
primary key of the weak entity's "base" table. And if the relationship between the weak entity and the
other entity is 1:N, then the other entity's "base" table's primary key that is inserted into the weak
entity's "base" table to serve as a foreign key may also be used as part of the primary key of the weak
entity's "base" table, along with some other attribute or attributes of the weak entity. (Since, in the 1:N
case, one instance of the parent entity may be related to several children instances of the weak entity,
using just the parent's primary key as the child weak entity's primary key would not be sufficient.)

Apartment model example
For example, consider the following:

Apt_Bldg Room
N1 contains

CS 325 - DB Reading Packet 8: "Database design, part 2" p. 11
Sharon Tuttle - last modified: 2021-08-31

Customer(CUST_NUM, cust_lname, cust_fname)

Flight_reservation(RES_NUM, date_made, flight_num, cust_num)
 foreign key (flight_num) references flight,
 foreign key (cust_num) references customer

Using Option 2) above, you would end up with the tables:

Flight(FLIGHT_NUM, flight_date, exp_departure, exp_arrival,
 actl_departure, actl_arrival)

Customer(CUST_NUM, cust_lname, cust_fname)

Flight_reservation(FLIGHT_NUM, CUST_NUM, date_made)
 foreign key (flight_num) references flight,
 foreign key (cust_num) references customer

Handling Weak Entities
The design process for weak entities is really mostly a special case of handling 1:1 or 1:N relationships.
(Since weak entities tend to be, by definition, identity-dependent upon the entity class they are related
to, it would be odd to have one involved in an N:M relationship.)

Just following the normal "rules" for handling 1:N and 1:1 relationships, you will usually end up
putting the primary key of the entity's "base" table that this weak entity is dependent upon into the
weak entity's "base" table as a foreign key -- in the 1:N case, the weak entity is usually the child, and in
the 1:1 case, the weak entity usually must be involved in the relationship.

So, why mention this at all? Because, since a weak entity is so dependent on another entity, it is quite
common for the weak entity's "base" table to have a primary key based on that other entity's "base"
table's primary key. If the relationship between the weak entity and the other entity is 1:1, and the
weak entity doesn't have suitable identifying attributes, then the other entity's "base" table's primary
key that is inserted into the weak entity's "base" table to serve as a foreign key may also be used as the
primary key of the weak entity's "base" table. And if the relationship between the weak entity and the
other entity is 1:N, then the other entity's "base" table's primary key that is inserted into the weak
entity's "base" table to serve as a foreign key may also be used as part of the primary key of the weak
entity's "base" table, along with some other attribute or attributes of the weak entity. (Since, in the 1:N
case, one instance of the parent entity may be related to several children instances of the weak entity,
using just the parent's primary key as the child weak entity's primary key would not be sufficient.)

Apartment model example
For example, consider the following:

Apt_Bldg Room
N1 contains

CS 325 - DB Reading Packet 8: "Database design, part 2" p. 12
Sharon Tuttle - last modified: 2021-08-31

 Apt_bldg Room
 --------- ---------
 BLDG_NUM Room_num
 Bldg_name Num_bedrooms
 Bldg_street_addr Num_baths

Using the above guidelines, this ER diagram could result in the tables:

Apt_bldg(BLDG_NUM, bldg_name, bldg_street_addr)

Room(BLDG_NUM, ROOM_NUM, num_bedrooms, num_baths)
 foreign key (bldg_num) references Apt_bldg

Handling Recursive Relationships
Recall that a recursive relationship is a relationship line that begins and ends at the same entity class:

Some other examples of recursive relationships might be course-is-a-prerequisite-of-course, student-
rooms-with-student, and employee-is-spouse-of-employee.

Again, really you handle this like any other relationship, based on whether it is 1:1, 1:N, or N:M. The
only additional design-stage consideration is that a primary keys placed in a table as a foreign key may
need to be given a different name than the original primary key, to avoid having two attributes with the
same name (which is of course forbidden in a relation!) And so you will need to use the "full" foreign
key syntax necessary when the foreign key name is different than the primary key attribute it
references, including the referenced attribute.

Employee-manager model example
Consider the above ER model. Based on the 1:N relationship, you know you would put the primary key
of the parent's/the 1 side's "base" table into the child's/N side's "base" table as a foreign key. But, say
that the Employee "base" table's primary key is EMPL_NUM.

Employee(EMPL_NUM,

Here, the "base" table of the parent and the child in this 1:N relationship are the same table, the
Employee table! So you cannot add a second attribute named empl_num to Employee!

However, you can add an attribute whose name is based on the recursive relationship -- here, for
example, mgr_num. And you can make this new attribute a foreign key by using the "full" foreign key

Employee manages

N

1

CS 325 - DB Reading Packet 8: "Database design, part 2" p. 12
Sharon Tuttle - last modified: 2021-08-31

 Apt_bldg Room
 --------- ---------
 BLDG_NUM Room_num
 Bldg_name Num_bedrooms
 Bldg_street_addr Num_baths

Using the above guidelines, this ER diagram could result in the tables:

Apt_bldg(BLDG_NUM, bldg_name, bldg_street_addr)

Room(BLDG_NUM, ROOM_NUM, num_bedrooms, num_baths)
 foreign key (bldg_num) references Apt_bldg

Handling Recursive Relationships
Recall that a recursive relationship is a relationship line that begins and ends at the same entity class:

Some other examples of recursive relationships might be course-is-a-prerequisite-of-course, student-
rooms-with-student, and employee-is-spouse-of-employee.

Again, really you handle this like any other relationship, based on whether it is 1:1, 1:N, or N:M. The
only additional design-stage consideration is that a primary keys placed in a table as a foreign key may
need to be given a different name than the original primary key, to avoid having two attributes with the
same name (which is of course forbidden in a relation!) And so you will need to use the "full" foreign
key syntax necessary when the foreign key name is different than the primary key attribute it
references, including the referenced attribute.

Employee-manager model example
Consider the above ER model. Based on the 1:N relationship, you know you would put the primary key
of the parent's/the 1 side's "base" table into the child's/N side's "base" table as a foreign key. But, say
that the Employee "base" table's primary key is EMPL_NUM.

Employee(EMPL_NUM,

Here, the "base" table of the parent and the child in this 1:N relationship are the same table, the
Employee table! So you cannot add a second attribute named empl_num to Employee!

However, you can add an attribute whose name is based on the recursive relationship -- here, for
example, mgr_num. And you can make this new attribute a foreign key by using the "full" foreign key

Employee manages

N

1

CS 325 - DB Reading Packet 8: "Database design, part 2" p. 13
Sharon Tuttle - last modified: 2021-08-31

syntax, where you specify the attribute name in the referenced table as well:

Employee(EMPL_NUM, mgr_num,
 foreign key (mgr_num) references Employee(empl_num)

(Quick population note: I don't really care what order you list your tables in your database
design/schema. However, when you then create a SQL script to create your tables based on your
database design/schema, note that the table-creation order does matter at that point -- a table with a
foreign key cannot be created unless the table it references already exists, to meet the requirements of
referential integrity. So, you will need to create tables without foreign keys first, and then those that
reference those tables, and then those that reference those tables, and so on.

There is another referential integrity implication directly related to situations such as the Employee
table above. As you cannot create a table with a foreign key until the table it references exists, so you
cannot insert a row containing a foreign key unless there is a row with that foreign key's value in the
corresponding parent table. But child and parent are the same table for the Employee table! So, how
does one handle this? By inserting the first row into Empl with a null value for mgr_num -- a foreign
key can be null (unless it is explicitly declared to be not null). Then employees who have that first
row's employee as their manager can be inserted, then those managed by those employees, and so on.

If every employee has a manager, and employee A manages employee B, and employee B manages
employee A, then you can insert a row for employee A with a mgr_num of null, then insert a row for
employee B with A's mgr_num, and then use the SQL UPDATE command to update just the mgr_num
attribute of A's row to now have a mgr_num of B, which is now just fine, as B's row exists.

Happily, in this kind of case, the awkwardness tends to only be at the beginning -- over time, new rows
usually reference already-existing rows, and there is little problem in day-to-day operations. After all,
new employees tend to be managed by already-existing employees.)

Handling multiple relationships between the same entities
As in the recursive case just described, the main design issue in this case is that you may need to be
careful how you name things -- you may need to rename a primary key inserted into another "base"
table as a foreign key, and if you need to do so that foreign key should be named in a way related to the
relationship, and should use the "full" foreign key syntax required when the foreign key and the
primary key it references have different names. And in the case of two N:M relationships between the
same two entities, you just need to make sure you give the two intersection tables names that make
their meanings (which relationships they represent) clear.

Member-talk model example
For example, consider the following:

CS 325 - DB Reading Packet 8: "Database design, part 2" p. 13
Sharon Tuttle - last modified: 2021-08-31

syntax, where you specify the attribute name in the referenced table as well:

Employee(EMPL_NUM, mgr_num,
 foreign key (mgr_num) references Employee(empl_num)

(Quick population note: I don't really care what order you list your tables in your database
design/schema. However, when you then create a SQL script to create your tables based on your
database design/schema, note that the table-creation order does matter at that point -- a table with a
foreign key cannot be created unless the table it references already exists, to meet the requirements of
referential integrity. So, you will need to create tables without foreign keys first, and then those that
reference those tables, and then those that reference those tables, and so on.

There is another referential integrity implication directly related to situations such as the Employee
table above. As you cannot create a table with a foreign key until the table it references exists, so you
cannot insert a row containing a foreign key unless there is a row with that foreign key's value in the
corresponding parent table. But child and parent are the same table for the Employee table! So, how
does one handle this? By inserting the first row into Empl with a null value for mgr_num -- a foreign
key can be null (unless it is explicitly declared to be not null). Then employees who have that first
row's employee as their manager can be inserted, then those managed by those employees, and so on.

If every employee has a manager, and employee A manages employee B, and employee B manages
employee A, then you can insert a row for employee A with a mgr_num of null, then insert a row for
employee B with A's mgr_num, and then use the SQL UPDATE command to update just the mgr_num
attribute of A's row to now have a mgr_num of B, which is now just fine, as B's row exists.

Happily, in this kind of case, the awkwardness tends to only be at the beginning -- over time, new rows
usually reference already-existing rows, and there is little problem in day-to-day operations. After all,
new employees tend to be managed by already-existing employees.)

Handling multiple relationships between the same entities
As in the recursive case just described, the main design issue in this case is that you may need to be
careful how you name things -- you may need to rename a primary key inserted into another "base"
table as a foreign key, and if you need to do so that foreign key should be named in a way related to the
relationship, and should use the "full" foreign key syntax required when the foreign key and the
primary key it references have different names. And in the case of two N:M relationships between the
same two entities, you just need to make sure you give the two intersection tables names that make
their meanings (which relationships they represent) clear.

Member-talk model example
For example, consider the following:

CS 325 - DB Reading Packet 8: "Database design, part 2" p. 14
Sharon Tuttle - last modified: 2021-08-31

(Note that this is a slightly different scenario than that depicted in the earlier homework -- here, more
than one member can share the task of being in charge of a single talk, and a talk doesn't have to have
any members signed up...)

When you find you need two intersection tables for the two N:M relationships between Member and
Talk, you just have to remember that it would be a poor choice to call either of those tables
Member_Talk or Talk_Member -- the purpose of such a table would not be clear. But table names such
as In_charge and Sign_up could work just fine:

Member(MEM_NUM, ...
Talk(TALK_NUM, ...
In_charge(MEM_NUM, TALK_NUM)
 foreign key (mem_num) references Member,
 foreign key (talk_num) references Talk
Sign_up(MEM_NUM, TALK_NUM)
 foreign key (mem_num) references Member,
 foreign key (talk_num) references Talk

Music-prof model example
You might get the dueling-foreign-key-names situation if, for example, there are two 1:N relationships
between two entities, and the parent is the same in both:

So, you will want to put Music-prof's "base" table's primary key into the Student's "base" table twice,
once for the gives-private-lesson-to relationship, and once for the advises relationship. Say that the

Member Talk

in-charge-of

signs-up-for

MN

N M

Music-prof Student

gives-private-lesson-to

advises

N1

1 N

CS 325 - DB Reading Packet 8: "Database design, part 2" p. 14
Sharon Tuttle - last modified: 2021-08-31

(Note that this is a slightly different scenario than that depicted in the earlier homework -- here, more
than one member can share the task of being in charge of a single talk, and a talk doesn't have to have
any members signed up...)

When you find you need two intersection tables for the two N:M relationships between Member and
Talk, you just have to remember that it would be a poor choice to call either of those tables
Member_Talk or Talk_Member -- the purpose of such a table would not be clear. But table names such
as In_charge and Sign_up could work just fine:

Member(MEM_NUM, ...
Talk(TALK_NUM, ...
In_charge(MEM_NUM, TALK_NUM)
 foreign key (mem_num) references Member,
 foreign key (talk_num) references Talk
Sign_up(MEM_NUM, TALK_NUM)
 foreign key (mem_num) references Member,
 foreign key (talk_num) references Talk

Music-prof model example
You might get the dueling-foreign-key-names situation if, for example, there are two 1:N relationships
between two entities, and the parent is the same in both:

So, you will want to put Music-prof's "base" table's primary key into the Student's "base" table twice,
once for the gives-private-lesson-to relationship, and once for the advises relationship. Say that the

Member Talk

in-charge-of

signs-up-for

MN

N M

Music-prof Student

gives-private-lesson-to

advises

N1

1 N

CS 325 - DB Reading Packet 8: "Database design, part 2" p. 15
Sharon Tuttle - last modified: 2021-08-31

Music-prof "base" table's primary key is PROF_NUM. I would argue that, in this case, it would be
confusing to use prof_num as the name of the foreign key in Student's "base" table for either
relationship -- priv_teacher_num and advisor_num might be less confusing names, in this case:

Music_prof(PROF_NUM, ...)
Student(STU_NUM, ..., priv_teacher_num, advisor_num)
 foreign key (priv_teacher_num) references Music_prof(prof_num),
 foreign key (advisor_num) references Music_prof(prof_num)

What if the 1's are on different sides in two 1:N relationships between two entities? Then there is no
name collision, and indeed no problem in the database design/schema stage -- say your tables are A and
B. A will have B's primary key as a foreign key, and B will have A's primary key as a foreign key.
Where a kluge will be necessary would be at table creation time -- since referential integrity constraints
require that a table cannot be created until the table it references is created, this kind of circular
situation is awkward. There is a solution:

* create table A without the foreign key;
* create table B with the foreign key referencing A;
* now use SQL's ALTER command to change the structure of table A, adding in the foreign key

referencing B.

And at table population, a row may need to be added to table A with a null foreign key, then rows can
be added to table B referencing that row in A, and then A's row can be UPDATE'd to now reference a
row in B.

Again, happily, in this kind of case, the awkwardness tends to only be at the beginning -- over time,
new rows usually reference already-existing rows, and there is little problem in day-to-day operations.

CS 325 - DB Reading Packet 8: "Database design, part 2" p. 15
Sharon Tuttle - last modified: 2021-08-31

Music-prof "base" table's primary key is PROF_NUM. I would argue that, in this case, it would be
confusing to use prof_num as the name of the foreign key in Student's "base" table for either
relationship -- priv_teacher_num and advisor_num might be less confusing names, in this case:

Music_prof(PROF_NUM, ...)
Student(STU_NUM, ..., priv_teacher_num, advisor_num)
 foreign key (priv_teacher_num) references Music_prof(prof_num),
 foreign key (advisor_num) references Music_prof(prof_num)

What if the 1's are on different sides in two 1:N relationships between two entities? Then there is no
name collision, and indeed no problem in the database design/schema stage -- say your tables are A and
B. A will have B's primary key as a foreign key, and B will have A's primary key as a foreign key.
Where a kluge will be necessary would be at table creation time -- since referential integrity constraints
require that a table cannot be created until the table it references is created, this kind of circular
situation is awkward. There is a solution:

* create table A without the foreign key;
* create table B with the foreign key referencing A;
* now use SQL's ALTER command to change the structure of table A, adding in the foreign key

referencing B.

And at table population, a row may need to be added to table A with a null foreign key, then rows can
be added to table B referencing that row in A, and then A's row can be UPDATE'd to now reference a
row in B.

Again, happily, in this kind of case, the awkwardness tends to only be at the beginning -- over time,
new rows usually reference already-existing rows, and there is little problem in day-to-day operations.

	Sources:
	BASICS of DATABASE DESIGN, Part 2
	Handling Supertype/Subtype Entity Classes
	Accounts-model example
	Univ-person model example

	Comments on a Supertype/Subtypes variant: UNIONS
	Univ-sponsor model example

	Handling Association Entities
	Flight model example

	Handling Weak Entities
	Apartment model example

	Handling Recursive Relationships
	Employee-manager model example

	Handling multiple relationships between the same entities
	Member-talk model example
	Music-prof model example

