
CS 325 - Homework 6 p. 1 of 4

CS 325 - Homework 6

Deadline
11:59 pm on Friday, October 22, 2021.

Purpose
To read and think about normalization, and to write more SQL queries, including queries with nested
selects/sub-selects, queries projecting concatenated expressions, and queries using & to allow interactive
input into a script.

How to submit
Problem 1 is completed on the course Canvas site.

For Problem 2 onward:

Each time you wish to submit, within the directory 325hw6 on nrs-projects.humboldt.edu (and at the nrs-
projects UNIX prompt, NOT inside sqlplus!) type:
~st10/325submit

...to submit your current files, using a homework number of 6.

(Make sure that the files you intend to submit are listed as having been submitted!)

Additional notes:
• You are required to use the HSU Oracle student database for Problem 2 of this homework.

• DB Reading Packet 6 and SQL Reading Packet 4, on the course Canvas site, and the Week 7 and
Week 8 Asynchronous Materials, along with the posted in-class projections from the public course web
site, are useful references for this homework.

• Feel free to add additional prompt commands to your SQL scripts as desired to enhance the
readability of the resulting output.

• You are expected to follow course style standards for SQL select statements.

Problem 1
Correctly complete the "HW 6 - Problem 1 - Reading Questions for DB Reading Packet 6 - Intro to
Normalization", on the course Canvas site.

Setup for Problem 2
Use ssh to connect to nrs-projects.humboldt.edu, and create, protect, and go to a directory
named 325hw6 on nrs-projects:

CS 325 - Homework 6 p. 1 of 4

CS 325 - Homework 6

Deadline
11:59 pm on Friday, October 22, 2021.

Purpose
To read and think about normalization, and to write more SQL queries, including queries with nested
selects/sub-selects, queries projecting concatenated expressions, and queries using & to allow interactive
input into a script.

How to submit
Problem 1 is completed on the course Canvas site.

For Problem 2 onward:

Each time you wish to submit, within the directory 325hw6 on nrs-projects.humboldt.edu (and at the nrs-
projects UNIX prompt, NOT inside sqlplus!) type:
~st10/325submit

...to submit your current files, using a homework number of 6.

(Make sure that the files you intend to submit are listed as having been submitted!)

Additional notes:
• You are required to use the HSU Oracle student database for Problem 2 of this homework.

• DB Reading Packet 6 and SQL Reading Packet 4, on the course Canvas site, and the Week 7 and
Week 8 Asynchronous Materials, along with the posted in-class projections from the public course web
site, are useful references for this homework.

• Feel free to add additional prompt commands to your SQL scripts as desired to enhance the
readability of the resulting output.

• You are expected to follow course style standards for SQL select statements.

Problem 1
Correctly complete the "HW 6 - Problem 1 - Reading Questions for DB Reading Packet 6 - Intro to
Normalization", on the course Canvas site.

Setup for Problem 2
Use ssh to connect to nrs-projects.humboldt.edu, and create, protect, and go to a directory
named 325hw6 on nrs-projects:

CS 325 - Homework 6 p. 2 of 4

mkdir 325hw6
chmod 700 325hw6
cd 325hw6

Put all of your files for Problem 2 in this directory. (And it is from this directory that you should type
~st10/325submit each time you would like to submit your files for Problem 6.)

Problem 2
This problem again uses the tables created by the SQL script movies-create.sql and populated by
movies-pop.sql. As a reminder, these tables can be described in relation structure form as:
Movie_category(CATEGORY_CODE, category_name)

Client(CLIENT_NUM, client_lname, client_fname, client_phone,
 client_credit_rtg, client_fave_cat)
 foreign key (client_fave_cat) references movie_category(category_code)

Movie(MOVIE_NUM, movie_title, movie_director_lname, movie_yr_released,
 movie_rating, category_code)
 foreign key(category_code) references movie_category

Video(VID_ID, vid_format, vid_purchase_date, vid_rental_price, movie_num)
 foreign key (movie_num) references movie

Rental(RENTAL_NUM, client_num, vid_id, date_out, date_due, date_returned)
 foreign key (client_num) references client,
 foreign key(vid_id) references video

And, again, for your convenience as a reference, a handout of these relation structures is posted along
with this homework handout.

(These tables should still exist in your database from Homework 4, so you should not need to re-run
movies-create.sql or movies-pop.sql unless you have been experimenting with insertions or
other table modifications.)

Use nano (or vi or emacs) to create a file named 325hw6.sql:
nano 325hw6.sql

While within nano (or whatever), type in the following within one or more SQL comments:

• your name
• CS 325 - Homework 6 - Problem 2
• the date this file was last modified

Then:

• use spool to start writing the results for this script's actions into a file 325hw6-out.txt
• put in a prompt command printing Homework 6 Problem 2
• put in a prompt command printing your name
• include a spool off command, at the BOTTOM/END of this file. Type your answers to the

problems below BEFORE this spool off command!

CS 325 - Homework 6 p. 2 of 4

mkdir 325hw6
chmod 700 325hw6
cd 325hw6

Put all of your files for Problem 2 in this directory. (And it is from this directory that you should type
~st10/325submit each time you would like to submit your files for Problem 6.)

Problem 2
This problem again uses the tables created by the SQL script movies-create.sql and populated by
movies-pop.sql. As a reminder, these tables can be described in relation structure form as:
Movie_category(CATEGORY_CODE, category_name)

Client(CLIENT_NUM, client_lname, client_fname, client_phone,
 client_credit_rtg, client_fave_cat)
 foreign key (client_fave_cat) references movie_category(category_code)

Movie(MOVIE_NUM, movie_title, movie_director_lname, movie_yr_released,
 movie_rating, category_code)
 foreign key(category_code) references movie_category

Video(VID_ID, vid_format, vid_purchase_date, vid_rental_price, movie_num)
 foreign key (movie_num) references movie

Rental(RENTAL_NUM, client_num, vid_id, date_out, date_due, date_returned)
 foreign key (client_num) references client,
 foreign key(vid_id) references video

And, again, for your convenience as a reference, a handout of these relation structures is posted along
with this homework handout.

(These tables should still exist in your database from Homework 4, so you should not need to re-run
movies-create.sql or movies-pop.sql unless you have been experimenting with insertions or
other table modifications.)

Use nano (or vi or emacs) to create a file named 325hw6.sql:
nano 325hw6.sql

While within nano (or whatever), type in the following within one or more SQL comments:

• your name
• CS 325 - Homework 6 - Problem 2
• the date this file was last modified

Then:

• use spool to start writing the results for this script's actions into a file 325hw6-out.txt
• put in a prompt command printing Homework 6 Problem 2
• put in a prompt command printing your name
• include a spool off command, at the BOTTOM/END of this file. Type your answers to the

problems below BEFORE this spool off command!

CS 325 - Homework 6 p. 3 of 4

NOTE!!! READ THIS!!!
Now, within your file 325hw6.sql, add in SQL statements for the following, PRECEDING EACH
with a SQL*Plus prompt command noting what problem part it is for.

Problem 2-1
Using a nested select statement, and using NO join or Cartesian product operations, project just
the video ids and video formats of all videos that have a rental price less than the average video rental
price.

Problem 2-2
Using a nested select statement, and using NO join or Cartesian product operations, project the
last names and first names only (do NOT project the date the video was due) for clients who have ever
rented the video with ID '130012'.

Problem 2-3
Write a select statement which projects ONE column in its result: this column, with heading
"Movie: Rating", shows, for each movie, the title for that movie, then a colon and a space, and then
the rating for that movie.

Problem 2-4
Write a select statement that projects TWO columns in its result:

• its first column, with heading "Movies", shows, for each movie, the title for that movie, a space, and
then, within a set of parentheses, the year that movie was released;

• and, its second column, with heading "Directors", shows the last name of the director of that movie

Problem 2-5
Write a select statement that projects the movie title(s) of the movie(s) whose video(s) have the earliest
video purchase date.

Problem 2-6
Consider a row in the rental table. If a rental has not yet been returned, its date_returned attribute
is null.

Using EXISTS, write a select statement that will project the last names, first names, and phone
numbers of clients that have rented a video and not returned it yet (those who have any unreturned video
rental -- we don't care, for this query, whether it happens to be overdue or not). That is, we want this
information for clients for which such a rental exists.

(NOTE: This will not be accepted as correct unless it properly uses EXISTS.)

CS 325 - Homework 6 p. 3 of 4

NOTE!!! READ THIS!!!
Now, within your file 325hw6.sql, add in SQL statements for the following, PRECEDING EACH
with a SQL*Plus prompt command noting what problem part it is for.

Problem 2-1
Using a nested select statement, and using NO join or Cartesian product operations, project just
the video ids and video formats of all videos that have a rental price less than the average video rental
price.

Problem 2-2
Using a nested select statement, and using NO join or Cartesian product operations, project the
last names and first names only (do NOT project the date the video was due) for clients who have ever
rented the video with ID '130012'.

Problem 2-3
Write a select statement which projects ONE column in its result: this column, with heading
"Movie: Rating", shows, for each movie, the title for that movie, then a colon and a space, and then
the rating for that movie.

Problem 2-4
Write a select statement that projects TWO columns in its result:

• its first column, with heading "Movies", shows, for each movie, the title for that movie, a space, and
then, within a set of parentheses, the year that movie was released;

• and, its second column, with heading "Directors", shows the last name of the director of that movie

Problem 2-5
Write a select statement that projects the movie title(s) of the movie(s) whose video(s) have the earliest
video purchase date.

Problem 2-6
Consider a row in the rental table. If a rental has not yet been returned, its date_returned attribute
is null.

Using EXISTS, write a select statement that will project the last names, first names, and phone
numbers of clients that have rented a video and not returned it yet (those who have any unreturned video
rental -- we don't care, for this query, whether it happens to be overdue or not). That is, we want this
information for clients for which such a rental exists.

(NOTE: This will not be accepted as correct unless it properly uses EXISTS.)

CS 325 - Homework 6 p. 4 of 4

Problem 2-7
Using NOT EXISTS, write a select statement that will project the titles of movies for which there are
no videos with the format Blu-Ray. That is, we want this information for movies for which no such video
exists.

 (NOTE: This will not be accepted as correct unless it properly uses NOT EXISTS.)

Problem 2-8
Using &, write a select statement that will project just the movie title and year released of movies
whose director is that of the director last name entered by the user when prompted when this SQL script is
run.

When you run 325hw6.sql one last time before submitting your homework files, enter whatever
director last name you like when this query is executed. I happened to enter Spielberg during the run
that resulted in the posted example 325hw6-out.txt.

Problem 2-9
Using &, AND using a nested select statement, and using NO join or Cartesian product operations,
write a select statement that will project just the movie title and director last name of movies whose
category CODE is that of the category NAME entered by the user when prompted when this SQL script is
run.

When you run 325hw6.sql one last time before submitting your homework files, enter whatever
category name you like when this query is executed. I happened to enter Classic during the run that
resulted in the posted example 325hw6-out.txt.

Submit your files 325hw6.sql and 325hw6-out.txt.

CS 325 - Homework 6 p. 4 of 4

Problem 2-7
Using NOT EXISTS, write a select statement that will project the titles of movies for which there are
no videos with the format Blu-Ray. That is, we want this information for movies for which no such video
exists.

 (NOTE: This will not be accepted as correct unless it properly uses NOT EXISTS.)

Problem 2-8
Using &, write a select statement that will project just the movie title and year released of movies
whose director is that of the director last name entered by the user when prompted when this SQL script is
run.

When you run 325hw6.sql one last time before submitting your homework files, enter whatever
director last name you like when this query is executed. I happened to enter Spielberg during the run
that resulted in the posted example 325hw6-out.txt.

Problem 2-9
Using &, AND using a nested select statement, and using NO join or Cartesian product operations,
write a select statement that will project just the movie title and director last name of movies whose
category CODE is that of the category NAME entered by the user when prompted when this SQL script is
run.

When you run 325hw6.sql one last time before submitting your homework files, enter whatever
category name you like when this query is executed. I happened to enter Classic during the run that
resulted in the posted example 325hw6-out.txt.

Submit your files 325hw6.sql and 325hw6-out.txt.

	Deadline
	Purpose
	How to submit
	Additional notes:
	Problem 1
	Setup for Problem 2
	Problem 2
	NOTE!!! READ THIS!!!
	Problem 2-1
	Problem 2-2
	Problem 2-3
	Problem 2-4
	Problem 2-5
	Problem 2-6
	Problem 2-7
	Problem 2-8
	Problem 2-9

