
CS 325 - Homework 10 p. 1 of 7

CS 325 - Homework 10

Deadline
11:59 pm on Friday, December 3, 2021.

Purpose
To read and think some more about topics related to transaction management and concurrency control, to
get more practice using views, to practice with some of the SQL*Plus commands useful for creating
attractive and readable ASCII reports, and to get more experience with some combinations of the SQL
features we have discussed so far.

How to submit
Problems 1, 2, 3, and 4 are completed on the course Canvas site.

For Problem 5 onward:

Each time you wish to submit, within the directory 325hw10 on nrs-projects.humboldt.edu (and at the
nrs-projects UNIX prompt, NOT inside sqlplus!) type:
~st10/325submit

...to submit your current files, using a homework number of 10.

(Make sure that the files you intend to submit are listed as having been submitted!)

Additional notes:
• You are required to use the HSU Oracle student database for Problem 5 of this homework.

• DB Reading Packets 9 and 10 and SQL Reading Packet 8, on the course Canvas site, and the Week
13 Asynchronous Materials, along with the posted in-class projections from the public course web site,
are useful references for this homework.

– (But since some of the queries also deliberately combine features we have discussed earlier, you
may also find it useful to refer to previous SQL Reading Packets, also.)

• Now that we have covered the order by clause, you are expected to use it appropriately when an
explicit row ordering is specified. Queries for problems asking for explicit row ordering will be
incorrect if they do not include a reasonable order by clause.

• Feel free to add additional prompt commands to your SQL scripts as desired to enhance the
readability of the resulting output.

• An example 325hw10-out.txt has been posted along with this homework handout, to help you see
if you are on the right track with your queries for Problem 5. If your 325hw10-out.txt matches
this posted one, that doesn't guarantee that you wrote appropriate queries, but it is an encouraging sign.

• You are expected to follow course style standards for SQL select statements.

CS 325 - Homework 10 p. 1 of 7

CS 325 - Homework 10

Deadline
11:59 pm on Friday, December 3, 2021.

Purpose
To read and think some more about topics related to transaction management and concurrency control, to
get more practice using views, to practice with some of the SQL*Plus commands useful for creating
attractive and readable ASCII reports, and to get more experience with some combinations of the SQL
features we have discussed so far.

How to submit
Problems 1, 2, 3, and 4 are completed on the course Canvas site.

For Problem 5 onward:

Each time you wish to submit, within the directory 325hw10 on nrs-projects.humboldt.edu (and at the
nrs-projects UNIX prompt, NOT inside sqlplus!) type:
~st10/325submit

...to submit your current files, using a homework number of 10.

(Make sure that the files you intend to submit are listed as having been submitted!)

Additional notes:
• You are required to use the HSU Oracle student database for Problem 5 of this homework.

• DB Reading Packets 9 and 10 and SQL Reading Packet 8, on the course Canvas site, and the Week
13 Asynchronous Materials, along with the posted in-class projections from the public course web site,
are useful references for this homework.

– (But since some of the queries also deliberately combine features we have discussed earlier, you
may also find it useful to refer to previous SQL Reading Packets, also.)

• Now that we have covered the order by clause, you are expected to use it appropriately when an
explicit row ordering is specified. Queries for problems asking for explicit row ordering will be
incorrect if they do not include a reasonable order by clause.

• Feel free to add additional prompt commands to your SQL scripts as desired to enhance the
readability of the resulting output.

• An example 325hw10-out.txt has been posted along with this homework handout, to help you see
if you are on the right track with your queries for Problem 5. If your 325hw10-out.txt matches
this posted one, that doesn't guarantee that you wrote appropriate queries, but it is an encouraging sign.

• You are expected to follow course style standards for SQL select statements.

CS 325 - Homework 10 p. 2 of 7

– Remember that, on the CS 325 public course web site, under "References", there is an evolving list
of course style standards posted. There is also a link to these on the course Canvas home page.

Problem 1
Correctly complete the "HW 10 - Problem 1 - Reading Questions for DB Reading Packet 10 - Transaction
Management, Part 2", on the course Canvas site.

Problem 2
Correctly complete the "HW 10 - Problem 2 - short-answer questions related to transaction logs", on the
course Canvas site.

Problem 3
Correctly complete the "HW 10 - Problem 3 - short-answer questions related to levels of DBMS support
for database integrity", on the course Canvas site.

Problem 4
Correctly complete the "HW 10 - Problem 4 - short-answer questions related to the five main database
transaction properties", on the course Canvas site.

Setup for Problem 5 onward
Use ssh to connect to nrs-projects.humboldt.edu, and create, protect, and go to a directory
named 325hw10 on nrs-projects:
mkdir 325hw10
chmod 700 325hw10
cd 325hw10

Put all of your files for this homework in this directory. (And it is from this directory that you should type
~st10/325submit to submit your files each time you want to submit the work you have done so far.)

Problem 5
This problem again uses the tables created by the SQL script movies-create.sql and populated by
movies-pop.sql. As a reminder, these tables can be described in relation structure form as:
Movie_category(CATEGORY_CODE, category_name)

Client(CLIENT_NUM, client_lname, client_fname, client_phone,
 client_credit_rtg, client_fave_cat)
 foreign key (client_fave_cat) references movie_category(category_code)

Movie(MOVIE_NUM, movie_title, movie_director_lname, movie_yr_released,
 movie_rating, category_code)
 foreign key(category_code) references movie_category

Video(VID_ID, vid_format, vid_purchase_date, vid_rental_price, movie_num)
 foreign key (movie_num) references movie

CS 325 - Homework 10 p. 2 of 7

– Remember that, on the CS 325 public course web site, under "References", there is an evolving list
of course style standards posted. There is also a link to these on the course Canvas home page.

Problem 1
Correctly complete the "HW 10 - Problem 1 - Reading Questions for DB Reading Packet 10 - Transaction
Management, Part 2", on the course Canvas site.

Problem 2
Correctly complete the "HW 10 - Problem 2 - short-answer questions related to transaction logs", on the
course Canvas site.

Problem 3
Correctly complete the "HW 10 - Problem 3 - short-answer questions related to levels of DBMS support
for database integrity", on the course Canvas site.

Problem 4
Correctly complete the "HW 10 - Problem 4 - short-answer questions related to the five main database
transaction properties", on the course Canvas site.

Setup for Problem 5 onward
Use ssh to connect to nrs-projects.humboldt.edu, and create, protect, and go to a directory
named 325hw10 on nrs-projects:
mkdir 325hw10
chmod 700 325hw10
cd 325hw10

Put all of your files for this homework in this directory. (And it is from this directory that you should type
~st10/325submit to submit your files each time you want to submit the work you have done so far.)

Problem 5
This problem again uses the tables created by the SQL script movies-create.sql and populated by
movies-pop.sql. As a reminder, these tables can be described in relation structure form as:
Movie_category(CATEGORY_CODE, category_name)

Client(CLIENT_NUM, client_lname, client_fname, client_phone,
 client_credit_rtg, client_fave_cat)
 foreign key (client_fave_cat) references movie_category(category_code)

Movie(MOVIE_NUM, movie_title, movie_director_lname, movie_yr_released,
 movie_rating, category_code)
 foreign key(category_code) references movie_category

Video(VID_ID, vid_format, vid_purchase_date, vid_rental_price, movie_num)
 foreign key (movie_num) references movie

CS 325 - Homework 10 p. 3 of 7

Rental(RENTAL_NUM, client_num, vid_id, date_out, date_due, date_returned)
 foreign key (client_num) references client,
 foreign key(vid_id) references video

And, again, for your convenience as a reference, a handout of these relation structures is posted along
with this homework handout.

These tables should still exist in your database from Homework 9, so you should not need to re-run
movies-create.sql (unless you have been experimenting with table modifications).

Create a file named 325hw10.sql and include the following within one or more SQL comments:

• your name
• CS 325 - Homework 10 - Problem 5
• the date this file was last modified

NOTE!!! READ THIS!!!

Now, within your file 325hw10.sql, add in SQL statements for the following, PRECEDING EACH
EXCEPT FOR PROBLEM 5-1 with a SQL*Plus prompt command noting what problem part it is
for.

Problem 5-1

(This ONE problem does NOT need to be preceded by a prompt command, for reasons that will
hopefully become clear...!)

Because this script includes update and delete statements, this script should start with a "fresh" set of
table contents each time it runs.

• Make a copy of movies-pop.sql in your 325hw10 directory.

– Note that one of several ways to get this is to copy it from my home directory on nrs-projects. For
example, assuming that you are currently in your 325hw10 directory,
cp ~st10/movies-pop.sql .

...should accomplish this. (NOTE the space and the . at the end -- those are important! They say you
are copying the file into your current directory, since . in Unix is a nickname for your current
directory.)

• *BEFORE* the spool command in 325hw10.sql, place a call executing movies-pop.sql.
(That is, place the command you would type within sqlplus to run movies-pop.sql within your
script 325hw10.sql BEFORE it starts spooling to 325hw10-out.txt)

– (why? because I really don't need to see all of the row-inserted feedbacks in your results file... 8-))

– (putting this within set termout off and set termout on would be fine, too!)

• use spool to NOW start writing the results for the REST of this script's actions into a file
325hw10-out.txt

• put in a prompt command printing Homework 10 Problem 5

• put in a prompt command printing your name

CS 325 - Homework 10 p. 3 of 7

Rental(RENTAL_NUM, client_num, vid_id, date_out, date_due, date_returned)
 foreign key (client_num) references client,
 foreign key(vid_id) references video

And, again, for your convenience as a reference, a handout of these relation structures is posted along
with this homework handout.

These tables should still exist in your database from Homework 9, so you should not need to re-run
movies-create.sql (unless you have been experimenting with table modifications).

Create a file named 325hw10.sql and include the following within one or more SQL comments:

• your name
• CS 325 - Homework 10 - Problem 5
• the date this file was last modified

NOTE!!! READ THIS!!!

Now, within your file 325hw10.sql, add in SQL statements for the following, PRECEDING EACH
EXCEPT FOR PROBLEM 5-1 with a SQL*Plus prompt command noting what problem part it is
for.

Problem 5-1

(This ONE problem does NOT need to be preceded by a prompt command, for reasons that will
hopefully become clear...!)

Because this script includes update and delete statements, this script should start with a "fresh" set of
table contents each time it runs.

• Make a copy of movies-pop.sql in your 325hw10 directory.

– Note that one of several ways to get this is to copy it from my home directory on nrs-projects. For
example, assuming that you are currently in your 325hw10 directory,
cp ~st10/movies-pop.sql .

...should accomplish this. (NOTE the space and the . at the end -- those are important! They say you
are copying the file into your current directory, since . in Unix is a nickname for your current
directory.)

• *BEFORE* the spool command in 325hw10.sql, place a call executing movies-pop.sql.
(That is, place the command you would type within sqlplus to run movies-pop.sql within your
script 325hw10.sql BEFORE it starts spooling to 325hw10-out.txt)

– (why? because I really don't need to see all of the row-inserted feedbacks in your results file... 8-))

– (putting this within set termout off and set termout on would be fine, too!)

• use spool to NOW start writing the results for the REST of this script's actions into a file
325hw10-out.txt

• put in a prompt command printing Homework 10 Problem 5

• put in a prompt command printing your name

CS 325 - Homework 10 p. 4 of 7

• include a spool off command, at the BOTTOM/END of this file. Type your answers to the REST of
the problems below BEFORE this spool off command!

Problem 5-2

(NOW start preceding each problem with a prompt command.)

Include SQL*Plus statements for each of the following within your script:

• explicitly clear any previously-set column headings, breaks, and computes
• create a top title and a bottom title (title contents of your choice)
• make the pagesize 35 lines and the linesize 75 characters.
• turn feedback off

Problem 5-3

Drop and create a view called rental_history which gives a view of which clients have rented
which videos by including rows with the following 4 columns:

• in its first column, it has the last name of the client followed by the first name, with a comma and a
blank separating the last name and the first name of each (e.g.:

Tuttle, Sharon

). Give this column the name client_name (do NOT use double-quotes in specifying this
column name, or ANY of the view column names given in this problem!)

– Hint: you can use concatenation in the select clause of the select statement defining a view.

• in its second column, it should have the movie title rented in that rental; make sure that, one way or
another, the name of this column is movie_title

• in its third column, it should have the format of the video rented; make sure that, one way or another,
the name of this column is vid_format

• in its fourth column, it should have the vid_rental_price; make sure that, one way or another, the
name of this column is vid_rental_price

• One more hint: if a join involves four tables, make sure you have three appropriate join conditions!

Then write a query doing a relation selection of this view, displaying the rows in order of
client_name, with a secondary ordering (for rows with the same client name) from most expensive
video rental price to least expensive video rental price, and with a third ordering by movie_title.

Problem 5-4

Consider the rental_history view from Problem 5-3.

Write column commands for each of the following:

• give column client_name the heading Client (camel-case, uppercase for the first letter and
lowercase for the rest),and format it so that it is:

– narrower than its default width,

CS 325 - Homework 10 p. 4 of 7

• include a spool off command, at the BOTTOM/END of this file. Type your answers to the REST of
the problems below BEFORE this spool off command!

Problem 5-2

(NOW start preceding each problem with a prompt command.)

Include SQL*Plus statements for each of the following within your script:

• explicitly clear any previously-set column headings, breaks, and computes
• create a top title and a bottom title (title contents of your choice)
• make the pagesize 35 lines and the linesize 75 characters.
• turn feedback off

Problem 5-3

Drop and create a view called rental_history which gives a view of which clients have rented
which videos by including rows with the following 4 columns:

• in its first column, it has the last name of the client followed by the first name, with a comma and a
blank separating the last name and the first name of each (e.g.:

Tuttle, Sharon

). Give this column the name client_name (do NOT use double-quotes in specifying this
column name, or ANY of the view column names given in this problem!)

– Hint: you can use concatenation in the select clause of the select statement defining a view.

• in its second column, it should have the movie title rented in that rental; make sure that, one way or
another, the name of this column is movie_title

• in its third column, it should have the format of the video rented; make sure that, one way or another,
the name of this column is vid_format

• in its fourth column, it should have the vid_rental_price; make sure that, one way or another, the
name of this column is vid_rental_price

• One more hint: if a join involves four tables, make sure you have three appropriate join conditions!

Then write a query doing a relation selection of this view, displaying the rows in order of
client_name, with a secondary ordering (for rows with the same client name) from most expensive
video rental price to least expensive video rental price, and with a third ordering by movie_title.

Problem 5-4

Consider the rental_history view from Problem 5-3.

Write column commands for each of the following:

• give column client_name the heading Client (camel-case, uppercase for the first letter and
lowercase for the rest),and format it so that it is:

– narrower than its default width,

CS 325 - Homework 10 p. 5 of 7

– but wide enough for all of the last-name-first name combinations currently there,

– but narrow enough that all of the columns "fit" on 1 line without wrapping in the subsequent query
results involving this column

• give column movie_title the heading Movie Title (camel-case, including the blank between
the 2 words), and format it so that it, too, is:

– narrower than its default width,

– but wide enough for all of the movie titles currently there,

– but narrow enough that all of the columns "fit" on 1 line without wrapping in the subsequent query
results involving this column

• give column vid_format the heading Format (camel-case, uppercase for the first letter and
lowercase for the rest), and format it so that its entire heading shows

• give column vid_rental_price the heading, with Rental Price (camel-case, including the
blank between the 2 words), and format it so that:

– it contains a $

– it always displays to 2 fractional places (to 2 decimal places)

– its entire heading shows

AFTER these column commands, then use / to rerun the previous query, from Problem 5-3, doing a
relation selection of this view, displaying the rows in order of client_name, with a secondary ordering
(for rows with the same client name) from most expensive video rental price to least expensive video
rental price, and with a third ordering by movie_title.

Problem 5-5

Consider what you get when you perform an equi-join of the movie, video, and movie_category
tables -- now you have the corresponding movie details for each video's movie. Drop and create a view
called category_stats which groups the videos by movie category name and contains only the
category name, the number of videos in that category, and the average rental price of videos in that
category. (Remember to rename the column names corresponding to function calls; choose appropriate
column names.)

Follow that with a query doing a relational selection of this view, displaying the rows in order of most
number of videos to least number of videos, with a secondary ordering by highest average rental price to
lowest average rental price.

Problem 5-6

Consider the category_stats view from Problem 5-5.

First, change the pagesize to 20 lines.

Write column commands for each of the following:

• give category_stats' first column the heading Category (in camel-case as shown)

• give category_stats' second column the heading # Videos (camel-case, including the blank

CS 325 - Homework 10 p. 5 of 7

– but wide enough for all of the last-name-first name combinations currently there,

– but narrow enough that all of the columns "fit" on 1 line without wrapping in the subsequent query
results involving this column

• give column movie_title the heading Movie Title (camel-case, including the blank between
the 2 words), and format it so that it, too, is:

– narrower than its default width,

– but wide enough for all of the movie titles currently there,

– but narrow enough that all of the columns "fit" on 1 line without wrapping in the subsequent query
results involving this column

• give column vid_format the heading Format (camel-case, uppercase for the first letter and
lowercase for the rest), and format it so that its entire heading shows

• give column vid_rental_price the heading, with Rental Price (camel-case, including the
blank between the 2 words), and format it so that:

– it contains a $

– it always displays to 2 fractional places (to 2 decimal places)

– its entire heading shows

AFTER these column commands, then use / to rerun the previous query, from Problem 5-3, doing a
relation selection of this view, displaying the rows in order of client_name, with a secondary ordering
(for rows with the same client name) from most expensive video rental price to least expensive video
rental price, and with a third ordering by movie_title.

Problem 5-5

Consider what you get when you perform an equi-join of the movie, video, and movie_category
tables -- now you have the corresponding movie details for each video's movie. Drop and create a view
called category_stats which groups the videos by movie category name and contains only the
category name, the number of videos in that category, and the average rental price of videos in that
category. (Remember to rename the column names corresponding to function calls; choose appropriate
column names.)

Follow that with a query doing a relational selection of this view, displaying the rows in order of most
number of videos to least number of videos, with a secondary ordering by highest average rental price to
lowest average rental price.

Problem 5-6

Consider the category_stats view from Problem 5-5.

First, change the pagesize to 20 lines.

Write column commands for each of the following:

• give category_stats' first column the heading Category (in camel-case as shown)

• give category_stats' second column the heading # Videos (camel-case, including the blank

CS 325 - Homework 10 p. 6 of 7

between the 2 parts), and format it so that it is wide enough to show the whole heading

• give category_stats' third column the heading Avg Price (camel-case, including the blank
between the 2 parts), and format it so that:

– it contains a $

– it always displays to 2 fractional places (to 2 decimal places)

– its entire heading shows

AFTER these column commands, then use / to rerun the previous query, from Problem 5-5, doing a
relational selection of the view category_stats, displaying the rows in order of most number of
videos to least number of videos, with a secondary ordering by highest average rental price to lowest
average rental price.

Problem 5-7

Commit the current state of your database -- we are about to make some hopefully-temporary changes
over the next few problems.

5-7 part a

Write an update statement to decrease the rental prices of all videos with format Blu-Ray by 0.25.

Then display the current contents of the view category_stats again, using the same row-ordering as
you did at the end of Problems 5-5 and 5-6. (Note that / will NOT work for redoing this query -- it causes
the last SQL statement to be redone, which in this case is the update statement, which we do NOT want
redone...!)

5-7 part b

Write a query, using ONLY the view rental_history, performing a "true" relational projection of
just the names of those clients who have rented 'Gone with the Wind', displaying the rows in order of
client_name.

5-7 part c

Write a single delete statement that will delete all rows from rental that involve the client with
client number '5555'. Then repeat your query from part b.

(Again, note that / will NOT work for redoing this query -- it causes the last SQL statement to be redone,
which in this case is the delete statement, not the preceding select.)

5-7 part d

Write a query, using the view rental_history only, to project each client's name and the number of
rentals they have made, displaying the rows in order from highest to lowest number of rentals, with a
secondary ordering by client name.

And, now that we are done with using update and delete to show how views nicely reflect changes in
their underlying tables, roll back the database to its state at the beginning of Problem 5-7.

CS 325 - Homework 10 p. 6 of 7

between the 2 parts), and format it so that it is wide enough to show the whole heading

• give category_stats' third column the heading Avg Price (camel-case, including the blank
between the 2 parts), and format it so that:

– it contains a $

– it always displays to 2 fractional places (to 2 decimal places)

– its entire heading shows

AFTER these column commands, then use / to rerun the previous query, from Problem 5-5, doing a
relational selection of the view category_stats, displaying the rows in order of most number of
videos to least number of videos, with a secondary ordering by highest average rental price to lowest
average rental price.

Problem 5-7

Commit the current state of your database -- we are about to make some hopefully-temporary changes
over the next few problems.

5-7 part a

Write an update statement to decrease the rental prices of all videos with format Blu-Ray by 0.25.

Then display the current contents of the view category_stats again, using the same row-ordering as
you did at the end of Problems 5-5 and 5-6. (Note that / will NOT work for redoing this query -- it causes
the last SQL statement to be redone, which in this case is the update statement, which we do NOT want
redone...!)

5-7 part b

Write a query, using ONLY the view rental_history, performing a "true" relational projection of
just the names of those clients who have rented 'Gone with the Wind', displaying the rows in order of
client_name.

5-7 part c

Write a single delete statement that will delete all rows from rental that involve the client with
client number '5555'. Then repeat your query from part b.

(Again, note that / will NOT work for redoing this query -- it causes the last SQL statement to be redone,
which in this case is the delete statement, not the preceding select.)

5-7 part d

Write a query, using the view rental_history only, to project each client's name and the number of
rentals they have made, displaying the rows in order from highest to lowest number of rentals, with a
secondary ordering by client name.

And, now that we are done with using update and delete to show how views nicely reflect changes in
their underlying tables, roll back the database to its state at the beginning of Problem 5-7.

CS 325 - Homework 10 p. 7 of 7

Problem 5-8

Do the following:

• change the pagesize to 45 lines

• write a break command to suppress repeated client names, putting one blank line between each set of
such rows

• write a query, using the view rental_history, to do a "pure" relational projection of the names
of clients who have rented movies and the titles of movies they have rented, displaying the rows in
order of client name and in secondary order by movie title

Problem 5-9

Recall that one of the computations that compute can do is avg.

Change the pagesize to 60 lines.

Write a compute command that will determine the average vid_rental_price for each set of
consecutive client names.

Then, write a relational selection of the view rental_history, displaying the rows in order of
client_name and in secondary order by movie_title.

Problem 5-10

Now:

• Turn off your spooling

• Either call cleanup.sql (available with this homework handout) or put in the SQL*Plus commands
to at least:

– clear columns, breaks, and computes,

– reset feedback to its default value,

– reset pagesize and linesize to their default values,

– turn off the top and bottom titles

Submit your files 325hw10.sql and 325hw10-out.txt.

CS 325 - Homework 10 p. 7 of 7

Problem 5-8

Do the following:

• change the pagesize to 45 lines

• write a break command to suppress repeated client names, putting one blank line between each set of
such rows

• write a query, using the view rental_history, to do a "pure" relational projection of the names
of clients who have rented movies and the titles of movies they have rented, displaying the rows in
order of client name and in secondary order by movie title

Problem 5-9

Recall that one of the computations that compute can do is avg.

Change the pagesize to 60 lines.

Write a compute command that will determine the average vid_rental_price for each set of
consecutive client names.

Then, write a relational selection of the view rental_history, displaying the rows in order of
client_name and in secondary order by movie_title.

Problem 5-10

Now:

• Turn off your spooling

• Either call cleanup.sql (available with this homework handout) or put in the SQL*Plus commands
to at least:

– clear columns, breaks, and computes,

– reset feedback to its default value,

– reset pagesize and linesize to their default values,

– turn off the top and bottom titles

Submit your files 325hw10.sql and 325hw10-out.txt.

	Deadline
	Purpose
	How to submit
	Additional notes:
	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Setup for Problem 5 onward
	Problem 5
	NOTE!!! READ THIS!!!
	Problem 5-1
	Problem 5-2
	Problem 5-3
	Problem 5-4
	Problem 5-5
	Problem 5-6
	Problem 5-7
	5-7 part a
	5-7 part b
	5-7 part c
	5-7 part d

	Problem 5-8
	Problem 5-9
	Problem 5-10

