Each of the following are depictions of the **same** relation, the **dept** relation, whose relation structure form can be given as: **dept(dept_name, DEPT_NUM, dept_loc)**

dept_name	ucpt_num	
Accounting	10	New York
Research	20	Dallas
Sales	30	Chicago
Operations	40	Boston

dept name dept num dept loc

dept_num dept_name dept_loc

40	Operations	Boston
30	Sales	Chicago
20	Research	Dallas
10	Accounting	New York

Relational selection example

For example, say that you have a **Student** relation as follows:

STUDENT table:

Stud_	Stud_LName	Stud_Major	Stud_Grade	Stud_Age
ID			_Level	
123	Jones	History	JR	21
158	Parks	Math	GR	26
105	Anderson	Management	SR	27
271	Smith	History	JR	19

Then the result of the **selection** operation on the **Student** table of rows in which **Stud_Age < 25** would be:

STUDENT WHERE Stud_Age < 25

Stud_Stud_LNameStud_MajorStud_GradeStud_AgeID__Level123JonesHistoryJR21271SmithHistoryJR19

Relational projection example

For example, say that you have a **Student** relation as follows: **STUDENT table:**

Stud_ ID	Stud_LName	Stud_Major	Stud_Grade _Level	Stud_Age
123	Jones	History	JR	21
158	Parks	Math	GR	26
105	Anderson	Management	SR	27
271	Smith	History	JR	19

Then the result of the **projection** operation of the **Student_Major** and **Stud_Grade_Level** attributes of the **Student** table would be:

Stud_Major Stud_Grade_Level

History	JR
Math	GR
Management	SR

Relational Cartesian product example

For example, say that you have a **Price** relation as follows:

Prod_Code	Price
AA	5.99
BB	22.75

And, say that you have a **Location** table as follows:

Store	Aisle	Shelf
23	W	5
24	K	9
25	Z	6

Then the Cartesian product of Price and Location would be:

Prod_Code	Price	Store	Aisle	Shelf
AA	5.99	23	W	5
AA	5.99	24	K	9
AA	5.99	25	Z	6
BB	22.75	23	W	5
BB	22.75	24	K	9
BB	22.75	25	Z	6

Relational equi-join and natural join examples

For example, say that you have **Student** and **Enrollment** tables as follows:

STUDENT table:

Stud_ ID	Stud_LName	Stud_Major	Stud_Grade_ Level	Stud_Age
123	Jones	History	JR	21
158	Parks	Math	GR	26
105	Anderson	Management	SR	27
271	Smith	History	JR	19

ENROLLMENT table:

Stud_ID Class_Name Position_Num

123	H350	1
105	BA490	3
123	BA490	7

Say that you wish to compute the **equi-join** and **natural join** of these tables based on the join condition (**Student.stud_id** = **Enrollment.stud_id**).

Student. Stud_ID	Stud_ LName	Stud_ Major	Stud_ Grade_ Level	Stud_ Age	Enrollment .Stud_ID	Class_ Name	Position _Num
123	Jones	History	JR	21	123	H350	1
123	Jones	History	JR	21	105	BA490	3
123	Jones	History	JR	21	123	BA490	7
158	Parks	Math	GR	26	123	H350	1
158	Parks	Math	GR	26	105	BA490	3
158	Parks	Math	GR	26	123	BA490	7
105	Anderson	Management	SR	27	123	H350	1
105	Anderson	Management	SR	27	105	BA490	3
105	Anderson	Management	SR	27	123	BA490	7
271	Smith	History	JR	19	123	H350	1
271	Smith	History	JR	19	105	BA490	3
271	Smith	History	JR	19	123	BA490	7

First, compute the Cartesian product of these two tables:

Second, perform a selection on this result of only those rows for which (**Student.stud_id = Enrollment.stud_id**):

Student. Stud_ID	Stud_ LName	Stud_ Major	Stud_ Grade_ Level	Stud_ Age	Enrollment .Stud_ID	Class_ Name	Position _Num
123	Jones	History	JR	21	123	H350	1
123	Jones	History	JR	21	123	BA490	7
105	Anderson	Management	SR	27	105	BA490	3

This is the **equi-join** of these two tables on the join condition (**Student.stud_id = Enrollment.stud_id**).

Then, the **natural join** of these two tables on this join condition would include the **third** step of now projecting all of the columns in this result except for one of the "duplicatecontents" columns (and it doesn't matter which one of the two is omitted).

So, for example, the resulting **natural join** in this case could be:

Stud_ID	Stud_ LName	Stud_ Major	Stud_ Grade_ Level	Stud_ Age	Class_ Name	Position_ Num
123	Jones	History	JR	21	H350	1
123	Jones	History	JR	21	BA490	7
105	Anderson	Management	SR	27	BA490	3