
CS 325 - SQL Reading Packet 2: "Writing relational operations using SQL" p. 1
Sharon Tuttle - last modified: 2021-09-09

CS 325 - SQL Reading Packet 2: "Writing relational
operations using SQL"

Sources:
• “Oracle9i Programming: A Primer,” Rajshekhar Sunderraman, Addison Wesley.

• Classic Oracle example tables empl and dept, adapted somewhat over the years

The basic SQL select statement syntax and semantics
In the reading packet introducing the relational model, we discussed the most important relational
operations, from relational algebra. In this packet, we're going to discuss how these relational
operations, and combinations of these relational operations, can be expressed in SQL.

In particular, we are going to be discussing Oracle SQL's select statement, which "provides a simple
and powerful way of expressing ad hoc queries against the database." Really, it is the basic query
statement in SQL, allowing you to ask questions about the data in a database. One can use it "to extract
the specified data from the database and present it to the user in an easy-to-read format" (or in the form
of a table, anyway).

Here's the confusing part: the relational operations are expressed in SQL using the SQL select
statement. What's confusing about that? Well, you should recall that the most important relational
operations are selection, projection, equi-join, and natural join (and that you have to understand
Cartesian product to understand the equi-join and natural join, even though you rarely want Cartesian
product by itself). You should not assume that the SQL select statement is only for the relational
selection operator! You use it to express selections and projections and equi-joins and natural joins,
and even Cartesian products (although rarely intentionally!).

You need to become very comfortable expressing these relational operations, and combinations of these
operations, using the SQL select statement.

(Note that SQL is not case-sensitive; it does not matter if you type SELECT or select or Select,
or even sElEcT (although that would be hard to read!). In SQL, case only matters within string literals
-- 'Hi' is not equal to 'hi'. You'll find that I tend to type SQL in lowercase, although sometimes I
might write some keywords in uppercase for emphasis. I don't mind what case you use, as long as you
are consistent about it within a given script.)

We're going to find out that the SQL select statement has a number of optional clauses. Ignoring
most of those optional clauses for the moment, here is the basic SQL select statement syntax
(where < > and [] are not part of the syntax, but < > is used to describe parts the user chooses, and
[] is used to indicate optional parts):
select [distinct] <one or more expressions, separated by commas>
from <1 or more expressions representing relations, sep'd by commas>
[where <search-condition>];

CS 325 - SQL Reading Packet 2: "Writing relational operations using SQL" p. 1
Sharon Tuttle - last modified: 2021-09-09

CS 325 - SQL Reading Packet 2: "Writing relational
operations using SQL"

Sources:
• “Oracle9i Programming: A Primer,” Rajshekhar Sunderraman, Addison Wesley.

• Classic Oracle example tables empl and dept, adapted somewhat over the years

The basic SQL select statement syntax and semantics
In the reading packet introducing the relational model, we discussed the most important relational
operations, from relational algebra. In this packet, we're going to discuss how these relational
operations, and combinations of these relational operations, can be expressed in SQL.

In particular, we are going to be discussing Oracle SQL's select statement, which "provides a simple
and powerful way of expressing ad hoc queries against the database." Really, it is the basic query
statement in SQL, allowing you to ask questions about the data in a database. One can use it "to extract
the specified data from the database and present it to the user in an easy-to-read format" (or in the form
of a table, anyway).

Here's the confusing part: the relational operations are expressed in SQL using the SQL select
statement. What's confusing about that? Well, you should recall that the most important relational
operations are selection, projection, equi-join, and natural join (and that you have to understand
Cartesian product to understand the equi-join and natural join, even though you rarely want Cartesian
product by itself). You should not assume that the SQL select statement is only for the relational
selection operator! You use it to express selections and projections and equi-joins and natural joins,
and even Cartesian products (although rarely intentionally!).

You need to become very comfortable expressing these relational operations, and combinations of these
operations, using the SQL select statement.

(Note that SQL is not case-sensitive; it does not matter if you type SELECT or select or Select,
or even sElEcT (although that would be hard to read!). In SQL, case only matters within string literals
-- 'Hi' is not equal to 'hi'. You'll find that I tend to type SQL in lowercase, although sometimes I
might write some keywords in uppercase for emphasis. I don't mind what case you use, as long as you
are consistent about it within a given script.)

We're going to find out that the SQL select statement has a number of optional clauses. Ignoring
most of those optional clauses for the moment, here is the basic SQL select statement syntax
(where < > and [] are not part of the syntax, but < > is used to describe parts the user chooses, and
[] is used to indicate optional parts):
select [distinct] <one or more expressions, separated by commas>
from <1 or more expressions representing relations, sep'd by commas>
[where <search-condition>];

CS 325 - SQL Reading Packet 2: "Writing relational operations using SQL" p. 2
Sharon Tuttle - last modified: 2021-09-09

We'll call the part of this consisting of the keyword select and the expressions following it the select
clause, the part of this consisting of the keyword from and the expressions following it the from
clause, and the (optional) part of this consisting of the keyword where and the search condition
following it the where clause.

So, a SQL select statement must always have a select clause and a from clause; optionally, it
may have a where clause (and it frequently does). It may also have additional optional clauses that we
will discuss later.

SQL*Plus does not care how many lines a SQL select statement is written across, although blank
lines within a select statement should be avoided since SQL*Plus considers a blank line to mean
that a SQL statement is finished! However, it will be a course style standard that the select clause,
the from clause, and the where clause will start on separate lines.

Here are the semantics of the SQL select statement: conceptually (although the algorithm may be
much more efficient in reality):

1. the Cartesian product of the relations listed in the from clause is computed;

2. a relational selection of this Cartesian product is computed, selecting only those rows for which the
where clause search condition is true;

3. a not-necessarily-"pure" relational projection of #2's selection is computed, projecting only the
expressions (often column names) from the select clause.

A table results from this, although that table is not saved, and it may not always be a true relation,
because, for efficiency reasons, a DBMS does not always perform a "pure" relational projection -- it
does not always perform the final step of removing any duplicate rows in the result. It only removes
any duplicate rows from the result if the optional keyword DISTINCT is included in the select
clause, after the keyword select and before the expressions whose results are to be projected.

Understanding these semantics will help you see how the SQL select statement can be used to
specify desired combinations of relational operations.

Remember the very simple select statement we used in the previous SQL reading packet?
select *
from <tablename>;

Now we can see that this, (1), computes the Cartesian product of the tables in the from clause -- but as
there is just one table in that clause, the result is just the rows of that table. Then, (2), there is no
where clause, so all of those rows are selected. Finally, (3), a * in the select clause is a shorthand
meaning one wants to project all of the columns in all of the tables in the from clause, and so all of the
columns in that table are projected to result in the final result. Thus we see all of the columns of all of
the rows of <tablename> as a result of this select statement.

Interlude: some example tables, and a few words on foreign
keys, other table constraints, and insert statements
Before we continue with additional examples, we need to set up some example tables. The home page

CS 325 - SQL Reading Packet 2: "Writing relational operations using SQL" p. 2
Sharon Tuttle - last modified: 2021-09-09

We'll call the part of this consisting of the keyword select and the expressions following it the select
clause, the part of this consisting of the keyword from and the expressions following it the from
clause, and the (optional) part of this consisting of the keyword where and the search condition
following it the where clause.

So, a SQL select statement must always have a select clause and a from clause; optionally, it
may have a where clause (and it frequently does). It may also have additional optional clauses that we
will discuss later.

SQL*Plus does not care how many lines a SQL select statement is written across, although blank
lines within a select statement should be avoided since SQL*Plus considers a blank line to mean
that a SQL statement is finished! However, it will be a course style standard that the select clause,
the from clause, and the where clause will start on separate lines.

Here are the semantics of the SQL select statement: conceptually (although the algorithm may be
much more efficient in reality):

1. the Cartesian product of the relations listed in the from clause is computed;

2. a relational selection of this Cartesian product is computed, selecting only those rows for which the
where clause search condition is true;

3. a not-necessarily-"pure" relational projection of #2's selection is computed, projecting only the
expressions (often column names) from the select clause.

A table results from this, although that table is not saved, and it may not always be a true relation,
because, for efficiency reasons, a DBMS does not always perform a "pure" relational projection -- it
does not always perform the final step of removing any duplicate rows in the result. It only removes
any duplicate rows from the result if the optional keyword DISTINCT is included in the select
clause, after the keyword select and before the expressions whose results are to be projected.

Understanding these semantics will help you see how the SQL select statement can be used to
specify desired combinations of relational operations.

Remember the very simple select statement we used in the previous SQL reading packet?
select *
from <tablename>;

Now we can see that this, (1), computes the Cartesian product of the tables in the from clause -- but as
there is just one table in that clause, the result is just the rows of that table. Then, (2), there is no
where clause, so all of those rows are selected. Finally, (3), a * in the select clause is a shorthand
meaning one wants to project all of the columns in all of the tables in the from clause, and so all of the
columns in that table are projected to result in the final result. Thus we see all of the columns of all of
the rows of <tablename> as a result of this select statement.

Interlude: some example tables, and a few words on foreign
keys, other table constraints, and insert statements
Before we continue with additional examples, we need to set up some example tables. The home page

CS 325 - SQL Reading Packet 2: "Writing relational operations using SQL" p. 3
Sharon Tuttle - last modified: 2021-09-09

for the public course web site should include a "References" section, within which should be a link to a
SQL script set-up-ex-tbls.sql, which sets up and populates three tables, empl, dept, and
customer. You can create a file set-up-ex-tbls.sql on nrs-projects, paste in this posted
link's contents, and save your resulting SQL script file. Alternately, I've placed a copy of this script file
at ~st10/cs325/set-up-ex-tbls.sql on nrs-projects and so you should be able to
make your own copy in your current directory with the UNIX command: (note the space and period at
the end, they are important!!)

cp ~st10/set-up-ex-tbls.sql .

Once you have the set-up-ex-tbls.sql SQL script, you should execute it within sqlplus to
set up and populate these tables on your Oracle account.

Let's look at this script for a moment, however, as it happens to include some features not discussed in
last week's SQL reading packet. You can either look at the posted version, or open the file using nano
or emacs or vi, or you can even look at it on-screen under UNIX by using
more set-up-ex-tbls.sql

Consider the drop table statements -- these now include the clause cascade constraints.
This clause means to drop this table even if it is a "parent" table, a table referenced by foreign keys in
other tables. (A table with such a foreign key is said to be a "child" table of this "parent" table that its
foreign key references.) In Oracle, a table has to already exist before another table can specify a foreign
key referencing that table; thus, "parent" tables must be created before "children" tables are created.
But "parents" cannot be dropped if their "child" tables still exist -- "child" tables have to be dropped
first. Since many programmers like to "pair" their drop table and create table statements
within a script setting up a set of tables, the cascade constraints clause makes this possible. It
should be used with some care, but if a script is going to completely recreate all of the tables in a
collection, it should be safe to use it in this way.

The earlier create table statement examples showed declaring a column by giving its name, and
giving a type to serve as a physical domain for the values that column is allowed to contain. But SQL
allows you to include some additional clauses to further limit, or constrain, the values considered to be
part of a column's domain -- it allows you to add some additional constraints on a column's domain.
You see some of the additional constraints in set-up-ex-tbls.sql's create table
statements.

For example, the dept table's create table statement is using an additional constraint, NOT
NULL, in the column definitions for dept_name and dept_loc. This is asking the DBMS to ensure
that rows inserted into dept must include values for these columns -- these columns should never be
allowed to contain the special NULL value. That is, dept_name and dept_loc should not be
permitted to be empty -- the domains for dept_name and dept_loc do not include NULL.

We discussed foreign keys in a previous reading packet; you see the SQL syntax for specifying a
foreign key in several of these create table statements:

foreign key (<col1>, <col2>, ...) references <tbl>

CS 325 - SQL Reading Packet 2: "Writing relational operations using SQL" p. 3
Sharon Tuttle - last modified: 2021-09-09

for the public course web site should include a "References" section, within which should be a link to a
SQL script set-up-ex-tbls.sql, which sets up and populates three tables, empl, dept, and
customer. You can create a file set-up-ex-tbls.sql on nrs-projects, paste in this posted
link's contents, and save your resulting SQL script file. Alternately, I've placed a copy of this script file
at ~st10/cs325/set-up-ex-tbls.sql on nrs-projects and so you should be able to
make your own copy in your current directory with the UNIX command: (note the space and period at
the end, they are important!!)

cp ~st10/set-up-ex-tbls.sql .

Once you have the set-up-ex-tbls.sql SQL script, you should execute it within sqlplus to
set up and populate these tables on your Oracle account.

Let's look at this script for a moment, however, as it happens to include some features not discussed in
last week's SQL reading packet. You can either look at the posted version, or open the file using nano
or emacs or vi, or you can even look at it on-screen under UNIX by using
more set-up-ex-tbls.sql

Consider the drop table statements -- these now include the clause cascade constraints.
This clause means to drop this table even if it is a "parent" table, a table referenced by foreign keys in
other tables. (A table with such a foreign key is said to be a "child" table of this "parent" table that its
foreign key references.) In Oracle, a table has to already exist before another table can specify a foreign
key referencing that table; thus, "parent" tables must be created before "children" tables are created.
But "parents" cannot be dropped if their "child" tables still exist -- "child" tables have to be dropped
first. Since many programmers like to "pair" their drop table and create table statements
within a script setting up a set of tables, the cascade constraints clause makes this possible. It
should be used with some care, but if a script is going to completely recreate all of the tables in a
collection, it should be safe to use it in this way.

The earlier create table statement examples showed declaring a column by giving its name, and
giving a type to serve as a physical domain for the values that column is allowed to contain. But SQL
allows you to include some additional clauses to further limit, or constrain, the values considered to be
part of a column's domain -- it allows you to add some additional constraints on a column's domain.
You see some of the additional constraints in set-up-ex-tbls.sql's create table
statements.

For example, the dept table's create table statement is using an additional constraint, NOT
NULL, in the column definitions for dept_name and dept_loc. This is asking the DBMS to ensure
that rows inserted into dept must include values for these columns -- these columns should never be
allowed to contain the special NULL value. That is, dept_name and dept_loc should not be
permitted to be empty -- the domains for dept_name and dept_loc do not include NULL.

We discussed foreign keys in a previous reading packet; you see the SQL syntax for specifying a
foreign key in several of these create table statements:

foreign key (<col1>, <col2>, ...) references <tbl>

CS 325 - SQL Reading Packet 2: "Writing relational operations using SQL" p. 4
Sharon Tuttle - last modified: 2021-09-09

or
foreign key (<col1>, <col2>, ...)
 references <tbl>(<diffname1>, <diffname2>, ...)

This is actually another constraint, although instead of a domain constraint on a column, it is a table
constraint on the table being created: it is saying that the column or columns specified are foreign keys
referencing the specified table. If these columns in the referenced table have exactly the same names as
in this table, you can use the first version above. Otherwise, you must use the second version.

By the way -- note empl's foreign key mgr. It is indeed a foreign key referencing the empl table
itself!

Also note the variation on the insert statement used for inserting rows into the empl table - this is
the version you use if you only want to explicitly fill some of the columns in a new row, or if you want
to specify the column values in an order different than their order in the table's create table
statement. After the table name, you include a parenthesized list of what columns' values are to be
specified and in what order, and after values you include a parenthesized list of exactly the values for
those columns, in that order. What happens to the unspecified columns in the new row? They will
either be NULL, or if the create table statement specifies a default value for that column, that
column will contain that default value. (We'll introduce how to specify a default value for a column a
little later in this reading packet.)

So,
insert into empl(empl_num, empl_last_name, job_title, mgr, hiredate,
 salary, dept_num)
values
('7934', 'Miller', 'Clerk', '7782', '23-Jan-2016', 1300.00, '100');

...is saying to insert a new row into empl with these values for empl_num, empl_last_name,
job_title, mgr, hiredate, salary, and dept_num. Since column commission is not in that
list, its value will be NULL for the new row.

Are you curious about how you can specify a default value for a column? You can see that in the
declaration for table customer's cust_balance column:
cust_balance number(7, 2) default 0.0,

...you include the constraint default followed by the desired default value.

You are encouraged to try out the SQL statements discussed in this reading packet, and see for yourself
that they work as described -- you are also encouraged to try out additional SQL statements, because
practicing writing SQL statements is the most effective way to become better at writing them!

But, so that the example queries might make more sense, here are the contents of the example tables
after set-up-ex-tbls.sql has been run:

The empl table contains:
EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---

CS 325 - SQL Reading Packet 2: "Writing relational operations using SQL" p. 4
Sharon Tuttle - last modified: 2021-09-09

or
foreign key (<col1>, <col2>, ...)
 references <tbl>(<diffname1>, <diffname2>, ...)

This is actually another constraint, although instead of a domain constraint on a column, it is a table
constraint on the table being created: it is saying that the column or columns specified are foreign keys
referencing the specified table. If these columns in the referenced table have exactly the same names as
in this table, you can use the first version above. Otherwise, you must use the second version.

By the way -- note empl's foreign key mgr. It is indeed a foreign key referencing the empl table
itself!

Also note the variation on the insert statement used for inserting rows into the empl table - this is
the version you use if you only want to explicitly fill some of the columns in a new row, or if you want
to specify the column values in an order different than their order in the table's create table
statement. After the table name, you include a parenthesized list of what columns' values are to be
specified and in what order, and after values you include a parenthesized list of exactly the values for
those columns, in that order. What happens to the unspecified columns in the new row? They will
either be NULL, or if the create table statement specifies a default value for that column, that
column will contain that default value. (We'll introduce how to specify a default value for a column a
little later in this reading packet.)

So,
insert into empl(empl_num, empl_last_name, job_title, mgr, hiredate,
 salary, dept_num)
values
('7934', 'Miller', 'Clerk', '7782', '23-Jan-2016', 1300.00, '100');

...is saying to insert a new row into empl with these values for empl_num, empl_last_name,
job_title, mgr, hiredate, salary, and dept_num. Since column commission is not in that
list, its value will be NULL for the new row.

Are you curious about how you can specify a default value for a column? You can see that in the
declaration for table customer's cust_balance column:
cust_balance number(7, 2) default 0.0,

...you include the constraint default followed by the desired default value.

You are encouraged to try out the SQL statements discussed in this reading packet, and see for yourself
that they work as described -- you are also encouraged to try out additional SQL statements, because
practicing writing SQL statements is the most effective way to become better at writing them!

But, so that the example queries might make more sense, here are the contents of the example tables
after set-up-ex-tbls.sql has been run:

The empl table contains:
EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---

CS 325 - SQL Reading Packet 2: "Writing relational operations using SQL" p. 5
Sharon Tuttle - last modified: 2021-09-09

7839 King President 17-NOV-11 5000 500
7566 Jones Manager 7839 02-APR-12 2975 200
7698 Blake Manager 7839 01-MAY-13 2850 300
7782 Raimi Manager 7839 09-JUN-12 2450 100
7902 Ford Analyst 7566 03-DEC-12 3000 200
7369 Smith Clerk 7902 17-DEC-12 800 200
7499 Michaels Sales 7698 20-FEB-18 1600 300 300
7521 Ward Sales 7698 22-FEB-19 1250 500 300
7654 Martin Sales 7698 28-SEP-18 1250 1400 300
7788 Scott Analyst 7566 09-NOV-18 3000 200
7844 Turner Sales 7698 08-SEP-19 1500 0 300

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
7876 Adams Clerk 7788 23-SEP-18 1100 400
7900 James Clerk 7698 03-DEC-17 950 300
7934 Miller Clerk 7782 23-JAN-16 1300 100

14 rows selected.

(Above, you are seeing the results using Oracle SQL*Plus's default display settings -- we'll be
discussing how to change these default display settings later in the semester. In the meantime, I'll just
note that the column headings are repeated about every 11 rows of output by default, and that
SQL*Plus sometimes does not show all of a column's name -- above, note that column dept_num has
a SQL*Plus default display of DEP! And a column with no value for a particular row -- a column
whose value is null for that row -- is displayed as blank, as you can see for most employees'
commission column and for President King's mgr column.)

The dept table contains:
DEP DEPT_NAME DEPT_LOC
--- --------------- ---------------
100 Accounting New York
200 Research Dallas
300 Sales Chicago
400 Operations Boston
500 Management New York

And the customer table contains:
CUST_I CUST_LNAME CUST_FNAME EMPL CUST_STREET
------ -------------------- --------------- ---- -------------------------
CUST_CITY CU CUST_ZIP CUST_BALANCE
--------------- -- ---------- ------------
100001 Firstly First 7499 1111 First Street
Fortuna CA 95520 1111.11

100002 Secondly Second 7654 2222 Second Street
McKinleyville CA 95523 222.2

CS 325 - SQL Reading Packet 2: "Writing relational operations using SQL" p. 5
Sharon Tuttle - last modified: 2021-09-09

7839 King President 17-NOV-11 5000 500
7566 Jones Manager 7839 02-APR-12 2975 200
7698 Blake Manager 7839 01-MAY-13 2850 300
7782 Raimi Manager 7839 09-JUN-12 2450 100
7902 Ford Analyst 7566 03-DEC-12 3000 200
7369 Smith Clerk 7902 17-DEC-12 800 200
7499 Michaels Sales 7698 20-FEB-18 1600 300 300
7521 Ward Sales 7698 22-FEB-19 1250 500 300
7654 Martin Sales 7698 28-SEP-18 1250 1400 300
7788 Scott Analyst 7566 09-NOV-18 3000 200
7844 Turner Sales 7698 08-SEP-19 1500 0 300

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
7876 Adams Clerk 7788 23-SEP-18 1100 400
7900 James Clerk 7698 03-DEC-17 950 300
7934 Miller Clerk 7782 23-JAN-16 1300 100

14 rows selected.

(Above, you are seeing the results using Oracle SQL*Plus's default display settings -- we'll be
discussing how to change these default display settings later in the semester. In the meantime, I'll just
note that the column headings are repeated about every 11 rows of output by default, and that
SQL*Plus sometimes does not show all of a column's name -- above, note that column dept_num has
a SQL*Plus default display of DEP! And a column with no value for a particular row -- a column
whose value is null for that row -- is displayed as blank, as you can see for most employees'
commission column and for President King's mgr column.)

The dept table contains:
DEP DEPT_NAME DEPT_LOC
--- --------------- ---------------
100 Accounting New York
200 Research Dallas
300 Sales Chicago
400 Operations Boston
500 Management New York

And the customer table contains:
CUST_I CUST_LNAME CUST_FNAME EMPL CUST_STREET
------ -------------------- --------------- ---- -------------------------
CUST_CITY CU CUST_ZIP CUST_BALANCE
--------------- -- ---------- ------------
100001 Firstly First 7499 1111 First Street
Fortuna CA 95520 1111.11

100002 Secondly Second 7654 2222 Second Street
McKinleyville CA 95523 222.2

CS 325 - SQL Reading Packet 2: "Writing relational operations using SQL" p. 6
Sharon Tuttle - last modified: 2021-09-09

100003 Thirdly Third 7499 333 Third Street
Arcata CA 95519-1234 0

(Because the default linesize in SQL*Plus is shorter than the default display width of the customer
table's rows, this appears in SQL*Plus with the ugly formatting shown above. Again, we'll discuss how
to change SQL*Plus's display default settings later in the semester.)

Using SQL select statements for the classic relational
operations

Relational projection with a SQL select statement
You can use a SQL select statement as follows to specify a "pure" relational projection:
select distinct <columns to project, separated by commas>
from <tbl>;

Here are some example "pure" relational projections:

This statement results in the relational projection of the empl_last_name, salary, and
hiredate columns of the empl table:
select distinct empl_last_name, salary, hiredate
from empl;

...with the results (for empl as filled in set-up-ex-tbls.sql):
EMPL_LAST_NAME SALARY HIREDATE
--------------- ---------- ---------
Michaels 1600 20-FEB-18
Ward 1250 22-FEB-19
Turner 1500 08-SEP-19
Blake 2850 01-MAY-13
James 950 03-DEC-17
King 5000 17-NOV-11
Ford 3000 03-DEC-12
Smith 800 17-DEC-12
Martin 1250 28-SEP-18
Adams 1100 23-SEP-18
Miller 1300 23-JAN-16

EMPL_LAST_NAME SALARY HIREDATE
--------------- ---------- ---------
Raimi 2450 09-JUN-12
Scott 3000 09-NOV-18
Jones 2975 02-APR-12

CS 325 - SQL Reading Packet 2: "Writing relational operations using SQL" p. 6
Sharon Tuttle - last modified: 2021-09-09

100003 Thirdly Third 7499 333 Third Street
Arcata CA 95519-1234 0

(Because the default linesize in SQL*Plus is shorter than the default display width of the customer
table's rows, this appears in SQL*Plus with the ugly formatting shown above. Again, we'll discuss how
to change SQL*Plus's display default settings later in the semester.)

Using SQL select statements for the classic relational
operations

Relational projection with a SQL select statement
You can use a SQL select statement as follows to specify a "pure" relational projection:
select distinct <columns to project, separated by commas>
from <tbl>;

Here are some example "pure" relational projections:

This statement results in the relational projection of the empl_last_name, salary, and
hiredate columns of the empl table:
select distinct empl_last_name, salary, hiredate
from empl;

...with the results (for empl as filled in set-up-ex-tbls.sql):
EMPL_LAST_NAME SALARY HIREDATE
--------------- ---------- ---------
Michaels 1600 20-FEB-18
Ward 1250 22-FEB-19
Turner 1500 08-SEP-19
Blake 2850 01-MAY-13
James 950 03-DEC-17
King 5000 17-NOV-11
Ford 3000 03-DEC-12
Smith 800 17-DEC-12
Martin 1250 28-SEP-18
Adams 1100 23-SEP-18
Miller 1300 23-JAN-16

EMPL_LAST_NAME SALARY HIREDATE
--------------- ---------- ---------
Raimi 2450 09-JUN-12
Scott 3000 09-NOV-18
Jones 2975 02-APR-12

CS 325 - SQL Reading Packet 2: "Writing relational operations using SQL" p. 7
Sharon Tuttle - last modified: 2021-09-09

14 rows selected.

This statement results in the relational projection of the job_title column of the empl table:
select distinct job_title
from empl;

...with the results:
JOB_TITLE

Manager
Analyst
Clerk
President
Sales

Notice that you can project the desired columns in any order that you like, and you will see the values
of these columns for all of the rows in the table. (But, because of the distinct, you will get a true
relation as the result: any duplicate rows in the result will be removed.)

What happens if you omit the distinct? Then you may get almost a "true" relational projection --
any duplicate rows will remain in the resulting table. Depending on what you are asking and why,
sometimes you might want duplicate rows (even if that isn't a true relation), and SQL gives you the
option, then. It is also a bit more efficient, since the DBMS doesn't have to do the work of checking for
duplicate rows before displaying the result. You should use distinct when you know duplicate rows
might occur and you don't want them.

Consider these two SQL queries:
select distinct job_title, dept_num
from empl;

select job_title, dept_num
from empl;

The results for:
select distinct job_title, dept_num
from empl;

...are:
JOB_TITLE DEP
---------- ---
Manager 100
Sales 300
Clerk 100
Manager 200
Manager 300

CS 325 - SQL Reading Packet 2: "Writing relational operations using SQL" p. 7
Sharon Tuttle - last modified: 2021-09-09

14 rows selected.

This statement results in the relational projection of the job_title column of the empl table:
select distinct job_title
from empl;

...with the results:
JOB_TITLE

Manager
Analyst
Clerk
President
Sales

Notice that you can project the desired columns in any order that you like, and you will see the values
of these columns for all of the rows in the table. (But, because of the distinct, you will get a true
relation as the result: any duplicate rows in the result will be removed.)

What happens if you omit the distinct? Then you may get almost a "true" relational projection --
any duplicate rows will remain in the resulting table. Depending on what you are asking and why,
sometimes you might want duplicate rows (even if that isn't a true relation), and SQL gives you the
option, then. It is also a bit more efficient, since the DBMS doesn't have to do the work of checking for
duplicate rows before displaying the result. You should use distinct when you know duplicate rows
might occur and you don't want them.

Consider these two SQL queries:
select distinct job_title, dept_num
from empl;

select job_title, dept_num
from empl;

The results for:
select distinct job_title, dept_num
from empl;

...are:
JOB_TITLE DEP
---------- ---
Manager 100
Sales 300
Clerk 100
Manager 200
Manager 300

CS 325 - SQL Reading Packet 2: "Writing relational operations using SQL" p. 8
Sharon Tuttle - last modified: 2021-09-09

Clerk 400
President 500
Analyst 200
Clerk 200
Clerk 300

10 rows selected.

And, the results for:
select job_title, dept_num
from empl;

...are:
JOB_TITLE DEP
---------- ---
President 500
Manager 200
Manager 300
Manager 100
Analyst 200
Clerk 200
Sales 300
Sales 300
Sales 300
Analyst 200
Sales 300

JOB_TITLE DEP
---------- ---
Clerk 400
Clerk 300
Clerk 100

14 rows selected.

Be sure you understand why the results of these two queries differ.

One more thought: if you are projecting (all of) a table's primary key, is it possible for there to be
duplicate rows in the result? No, because primary keys are not permitted to be the same in any two
rows. So there really isn't any need to use distinct if you are projecting a table's primary key, as the
result is guaranteed to be the "true" relational projection without it.

Relational Selection with a SQL select statement
You can use a SQL select statement as follows to specify a relational selection:

CS 325 - SQL Reading Packet 2: "Writing relational operations using SQL" p. 8
Sharon Tuttle - last modified: 2021-09-09

Clerk 400
President 500
Analyst 200
Clerk 200
Clerk 300

10 rows selected.

And, the results for:
select job_title, dept_num
from empl;

...are:
JOB_TITLE DEP
---------- ---
President 500
Manager 200
Manager 300
Manager 100
Analyst 200
Clerk 200
Sales 300
Sales 300
Sales 300
Analyst 200
Sales 300

JOB_TITLE DEP
---------- ---
Clerk 400
Clerk 300
Clerk 100

14 rows selected.

Be sure you understand why the results of these two queries differ.

One more thought: if you are projecting (all of) a table's primary key, is it possible for there to be
duplicate rows in the result? No, because primary keys are not permitted to be the same in any two
rows. So there really isn't any need to use distinct if you are projecting a table's primary key, as the
result is guaranteed to be the "true" relational projection without it.

Relational Selection with a SQL select statement
You can use a SQL select statement as follows to specify a relational selection:

CS 325 - SQL Reading Packet 2: "Writing relational operations using SQL" p. 9
Sharon Tuttle - last modified: 2021-09-09

select *
from <tbl>
where <condition specifying rows to select>;

Here are some example relational selections:

This is the relational selection of the rows of the empl table where job_title = 'Manager':
select *
from empl
where job_title = 'Manager';

...with the results:
EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
7566 Jones Manager 7839 02-APR-12 2975 200
7698 Blake Manager 7839 01-MAY-13 2850 300
7782 Raimi Manager 7839 09-JUN-12 2450 100

SQL actually provides a rich set of ways specifying which rows to select -- for now, note that you can
use =, as above, to specify that you want rows where a particular column's value is equal to the
specified value. You can also use <, <=, >, >=, to indicate that you are interested in rows where a
column's value is compared in these ways to some value, and there are two ways to indicate that you
are interested in rows in which a column is not equal to some value: <> and != .

Quick question: what rows do you think will result from the query:
select *
from empl
where job_title = 'manager';

Try it -- you'll see that no rows result. (Note that, mathematically, the empty table is a relation, too! It
is a set with no tuples/rows.) This is because the only place that SQL is case-sensitive is within string
literals, so 'Manager' is not equal to 'manager'.

(The output you see in SQL*Plus:
no rows selected

...is called feedback in Oracle SQL*Plus, and that is another SQL*Plus environment option that the
user can set: the user can specify that they also want the number of rows selected output to the screen
along with a SQL query's output. Why do you not always see it, by default? Because feedback's default
setting in Oracle SQL*Plus is to display when a result has no rows, or has 6 or more rows. We'll also
talk about how to modify this later in the semester.)

As a non-empty selection example, this is the relational selection of the rows of the empl table in
which the hiredate is after June 1, 2013:
select *
from empl
where hiredate > '01-JUN-2013';

CS 325 - SQL Reading Packet 2: "Writing relational operations using SQL" p. 9
Sharon Tuttle - last modified: 2021-09-09

select *
from <tbl>
where <condition specifying rows to select>;

Here are some example relational selections:

This is the relational selection of the rows of the empl table where job_title = 'Manager':
select *
from empl
where job_title = 'Manager';

...with the results:
EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
7566 Jones Manager 7839 02-APR-12 2975 200
7698 Blake Manager 7839 01-MAY-13 2850 300
7782 Raimi Manager 7839 09-JUN-12 2450 100

SQL actually provides a rich set of ways specifying which rows to select -- for now, note that you can
use =, as above, to specify that you want rows where a particular column's value is equal to the
specified value. You can also use <, <=, >, >=, to indicate that you are interested in rows where a
column's value is compared in these ways to some value, and there are two ways to indicate that you
are interested in rows in which a column is not equal to some value: <> and != .

Quick question: what rows do you think will result from the query:
select *
from empl
where job_title = 'manager';

Try it -- you'll see that no rows result. (Note that, mathematically, the empty table is a relation, too! It
is a set with no tuples/rows.) This is because the only place that SQL is case-sensitive is within string
literals, so 'Manager' is not equal to 'manager'.

(The output you see in SQL*Plus:
no rows selected

...is called feedback in Oracle SQL*Plus, and that is another SQL*Plus environment option that the
user can set: the user can specify that they also want the number of rows selected output to the screen
along with a SQL query's output. Why do you not always see it, by default? Because feedback's default
setting in Oracle SQL*Plus is to display when a result has no rows, or has 6 or more rows. We'll also
talk about how to modify this later in the semester.)

As a non-empty selection example, this is the relational selection of the rows of the empl table in
which the hiredate is after June 1, 2013:
select *
from empl
where hiredate > '01-JUN-2013';

CS 325 - SQL Reading Packet 2: "Writing relational operations using SQL" p. 10
Sharon Tuttle - last modified: 2021-09-09

...with the results:
EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
7499 Michaels Sales 7698 20-FEB-18 1600 300 300
7521 Ward Sales 7698 22-FEB-19 1250 500 300
7654 Martin Sales 7698 28-SEP-18 1250 1400 300
7788 Scott Analyst 7566 09-NOV-18 3000 200
7844 Turner Sales 7698 08-SEP-19 1500 0 300
7876 Adams Clerk 7788 23-SEP-18 1100 400
7900 James Clerk 7698 03-DEC-17 950 300
7934 Miller Clerk 7782 23-JAN-16 1300 100

8 rows selected.

Relational equi-join with a SQL select statement
There is more than one way to write equi-joins and natural joins in Oracle's implementation of SQL,
but they are not all created equal! For CS 325, you are expected to use one of the two variants
described below for equi-joins and natural joins (others exist, but, for various reasons we won't go into
right now, these will be considered poor style and against course coding standards). When we discuss
several other types of join later in the semester, we'll add the acceptable syntax for those joins.

If you consider our semantic definition of equi-join from the reading packet introducing the relational
model, it should be pretty clear that you can use a SQL select statement as follows to specify an
equi-join:
select *
from <tbl1>, <tbl2>
where <tbl1.join-col> = <tbl2.join-col>;

After all, this specifies (conceptually -- the actual algorithm is more efficient than this sounds!) taking
the Cartesian product of tbl1 and tbl2,then selecting only those rows for which tbl1.join-col
and tbl2.join-col are equal, then projecting all of the columns in the result.

There is also an alternate way of expressing this in a SQL select statement -- a so-called ANSI join,
because this syntax was added in the SQL-92 ANSI revision of the SQL standard:
select *
from <tbl1> join <tbl2>
 on <tbl1.join-col> = <tbl2.join-col>;

My understanding is that the Oracle DBMS converts either of these to the same executable code, so
both should be equivalent in terms of performance.

Note that, using either style, when you are doing an equi-join or a natural join of two tables tbl1 and
tbl2, you are expected to always explicitly include the equality condition specifying which column
you are joining the two tables on -- you always need the <tbl1.join-col> = <tbl2.join-
col>. We'll call this the join condition.

CS 325 - SQL Reading Packet 2: "Writing relational operations using SQL" p. 10
Sharon Tuttle - last modified: 2021-09-09

...with the results:
EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
7499 Michaels Sales 7698 20-FEB-18 1600 300 300
7521 Ward Sales 7698 22-FEB-19 1250 500 300
7654 Martin Sales 7698 28-SEP-18 1250 1400 300
7788 Scott Analyst 7566 09-NOV-18 3000 200
7844 Turner Sales 7698 08-SEP-19 1500 0 300
7876 Adams Clerk 7788 23-SEP-18 1100 400
7900 James Clerk 7698 03-DEC-17 950 300
7934 Miller Clerk 7782 23-JAN-16 1300 100

8 rows selected.

Relational equi-join with a SQL select statement
There is more than one way to write equi-joins and natural joins in Oracle's implementation of SQL,
but they are not all created equal! For CS 325, you are expected to use one of the two variants
described below for equi-joins and natural joins (others exist, but, for various reasons we won't go into
right now, these will be considered poor style and against course coding standards). When we discuss
several other types of join later in the semester, we'll add the acceptable syntax for those joins.

If you consider our semantic definition of equi-join from the reading packet introducing the relational
model, it should be pretty clear that you can use a SQL select statement as follows to specify an
equi-join:
select *
from <tbl1>, <tbl2>
where <tbl1.join-col> = <tbl2.join-col>;

After all, this specifies (conceptually -- the actual algorithm is more efficient than this sounds!) taking
the Cartesian product of tbl1 and tbl2,then selecting only those rows for which tbl1.join-col
and tbl2.join-col are equal, then projecting all of the columns in the result.

There is also an alternate way of expressing this in a SQL select statement -- a so-called ANSI join,
because this syntax was added in the SQL-92 ANSI revision of the SQL standard:
select *
from <tbl1> join <tbl2>
 on <tbl1.join-col> = <tbl2.join-col>;

My understanding is that the Oracle DBMS converts either of these to the same executable code, so
both should be equivalent in terms of performance.

Note that, using either style, when you are doing an equi-join or a natural join of two tables tbl1 and
tbl2, you are expected to always explicitly include the equality condition specifying which column
you are joining the two tables on -- you always need the <tbl1.join-col> = <tbl2.join-
col>. We'll call this the join condition.

CS 325 - SQL Reading Packet 2: "Writing relational operations using SQL" p. 11
Sharon Tuttle - last modified: 2021-09-09

One advantage of the ANSI variant is that you are less likely to accidentally write a Cartesian product
when you meant to write an equi-join by leaving out the join condition!

Here are some equi-join examples:

Each of the following is the equi-join of the tables empl and dept using the join condition
empl.dept_num = dept.dept_num:

select *
from empl, dept
where empl.dept_num = dept.dept_num;

select *
from empl join dept
 on empl.dept_num = dept.dept_num;

These have exactly the same result -- because the default linesize in SQL*Plus is shorter than the
default display width of the equi-join's resulting rows, this appears in SQL*Plus about as follows:
EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP DEP
---- --------------- ---------- ---- --------- ---------- ---------- --- ---
DEPT_NAME DEPT_LOC
--------------- ---------------
7839 King President 17-NOV-11 5000 500 500
Management New York

7566 Jones Manager 7839 02-APR-12 2975 200 200
Research Dallas

7698 Blake Manager 7839 01-MAY-13 2850 300 300
Sales Chicago

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP DEP
---- --------------- ---------- ---- --------- ---------- ---------- --- ---
DEPT_NAME DEPT_LOC
--------------- ---------------
7782 Raimi Manager 7839 09-JUN-12 2450 100 100
Accounting New York

7902 Ford Analyst 7566 03-DEC-12 3000 200 200
Research Dallas

7369 Smith Clerk 7902 17-DEC-12 800 200 200
Research Dallas

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP DEP
---- --------------- ---------- ---- --------- ---------- ---------- --- ---
DEPT_NAME DEPT_LOC
--------------- ---------------
7499 Michaels Sales 7698 20-FEB-18 1600 300 300 300
Sales Chicago

7521 Ward Sales 7698 22-FEB-19 1250 500 300 300
Sales Chicago

7654 Martin Sales 7698 28-SEP-18 1250 1400 300 300

CS 325 - SQL Reading Packet 2: "Writing relational operations using SQL" p. 11
Sharon Tuttle - last modified: 2021-09-09

One advantage of the ANSI variant is that you are less likely to accidentally write a Cartesian product
when you meant to write an equi-join by leaving out the join condition!

Here are some equi-join examples:

Each of the following is the equi-join of the tables empl and dept using the join condition
empl.dept_num = dept.dept_num:

select *
from empl, dept
where empl.dept_num = dept.dept_num;

select *
from empl join dept
 on empl.dept_num = dept.dept_num;

These have exactly the same result -- because the default linesize in SQL*Plus is shorter than the
default display width of the equi-join's resulting rows, this appears in SQL*Plus about as follows:
EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP DEP
---- --------------- ---------- ---- --------- ---------- ---------- --- ---
DEPT_NAME DEPT_LOC
--------------- ---------------
7839 King President 17-NOV-11 5000 500 500
Management New York

7566 Jones Manager 7839 02-APR-12 2975 200 200
Research Dallas

7698 Blake Manager 7839 01-MAY-13 2850 300 300
Sales Chicago

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP DEP
---- --------------- ---------- ---- --------- ---------- ---------- --- ---
DEPT_NAME DEPT_LOC
--------------- ---------------
7782 Raimi Manager 7839 09-JUN-12 2450 100 100
Accounting New York

7902 Ford Analyst 7566 03-DEC-12 3000 200 200
Research Dallas

7369 Smith Clerk 7902 17-DEC-12 800 200 200
Research Dallas

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP DEP
---- --------------- ---------- ---- --------- ---------- ---------- --- ---
DEPT_NAME DEPT_LOC
--------------- ---------------
7499 Michaels Sales 7698 20-FEB-18 1600 300 300 300
Sales Chicago

7521 Ward Sales 7698 22-FEB-19 1250 500 300 300
Sales Chicago

7654 Martin Sales 7698 28-SEP-18 1250 1400 300 300

CS 325 - SQL Reading Packet 2: "Writing relational operations using SQL" p. 12
Sharon Tuttle - last modified: 2021-09-09

Sales Chicago

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP DEP
---- --------------- ---------- ---- --------- ---------- ---------- --- ---
DEPT_NAME DEPT_LOC
--------------- ---------------
7788 Scott Analyst 7566 09-NOV-18 3000 200 200
Research Dallas

7844 Turner Sales 7698 08-SEP-19 1500 0 300 300
Sales Chicago

7876 Adams Clerk 7788 23-SEP-18 1100 400 400
Operations Boston

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP DEP
---- --------------- ---------- ---- --------- ---------- ---------- --- ---
DEPT_NAME DEPT_LOC
--------------- ---------------
7900 James Clerk 7698 03-DEC-17 950 300 300
Sales Chicago

7934 Miller Clerk 7782 23-JAN-16 1300 100 100
Accounting New York

Here are the same results, reformatted for this reading packet to make sure it is clear what relation is
resulting from this equi-join:

empl_
num

empl_last
_name

job_title mgr hiredate salary com
miss
ion

empl.
dept_
num

dept.
dept_
num

dept_name dept_loc

7839 King President 17-NOV-11 5000 500 500 Management New York

7566 Jones Manager 7839 02-APR-12 2975 200 200 Research Dallas

7698 Blake Manager 7839 01-MAY-13 2850 300 300 Sales Chicago

7782 Raimi Manager 7839 09-JUN-12 2450 100 100 Accounting New York

7902 Ford Analyst 7566 03-DEC-12 3000 200 200 Research Dallas

7369 Smith Clerk 7902 17-DEC-12 800 200 200 Research Dallas

7499 Michaels Sales 7698 20-FEB-18 1600 300 300 300 Sales Chicago

7521 Ward Sales 7698 22-FEB-19 1250 500 300 300 Sales Chicago

7654 Martin Sales 7698 28-SEP-18 1250 1400 300 300 Sales Chicago

7788 Scott Analyst 7566 09-NOV-18 3000 200 200 Research Dallas

7844 Turner Sales 7698 08-SEP-19 1500 0 300 300 Sales Chicago

7876 Adams Clerk 7788 23-SEP-18 1100 400 400 Operations Boston

7900 James Clerk 7698 03-DEC-17 950 300 300 Sales Chicago

7934 Miller Clerk 7782 23-JAN-16 1300 100 100 Accounting New York

CS 325 - SQL Reading Packet 2: "Writing relational operations using SQL" p. 12
Sharon Tuttle - last modified: 2021-09-09

Sales Chicago

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP DEP
---- --------------- ---------- ---- --------- ---------- ---------- --- ---
DEPT_NAME DEPT_LOC
--------------- ---------------
7788 Scott Analyst 7566 09-NOV-18 3000 200 200
Research Dallas

7844 Turner Sales 7698 08-SEP-19 1500 0 300 300
Sales Chicago

7876 Adams Clerk 7788 23-SEP-18 1100 400 400
Operations Boston

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP DEP
---- --------------- ---------- ---- --------- ---------- ---------- --- ---
DEPT_NAME DEPT_LOC
--------------- ---------------
7900 James Clerk 7698 03-DEC-17 950 300 300
Sales Chicago

7934 Miller Clerk 7782 23-JAN-16 1300 100 100
Accounting New York

Here are the same results, reformatted for this reading packet to make sure it is clear what relation is
resulting from this equi-join:

empl_
num

empl_last
_name

job_title mgr hiredate salary com
miss
ion

empl.
dept_
num

dept.
dept_
num

dept_name dept_loc

7839 King President 17-NOV-11 5000 500 500 Management New York

7566 Jones Manager 7839 02-APR-12 2975 200 200 Research Dallas

7698 Blake Manager 7839 01-MAY-13 2850 300 300 Sales Chicago

7782 Raimi Manager 7839 09-JUN-12 2450 100 100 Accounting New York

7902 Ford Analyst 7566 03-DEC-12 3000 200 200 Research Dallas

7369 Smith Clerk 7902 17-DEC-12 800 200 200 Research Dallas

7499 Michaels Sales 7698 20-FEB-18 1600 300 300 300 Sales Chicago

7521 Ward Sales 7698 22-FEB-19 1250 500 300 300 Sales Chicago

7654 Martin Sales 7698 28-SEP-18 1250 1400 300 300 Sales Chicago

7788 Scott Analyst 7566 09-NOV-18 3000 200 200 Research Dallas

7844 Turner Sales 7698 08-SEP-19 1500 0 300 300 Sales Chicago

7876 Adams Clerk 7788 23-SEP-18 1100 400 400 Operations Boston

7900 James Clerk 7698 03-DEC-17 950 300 300 Sales Chicago

7934 Miller Clerk 7782 23-JAN-16 1300 100 100 Accounting New York

CS 325 - SQL Reading Packet 2: "Writing relational operations using SQL" p. 13
Sharon Tuttle - last modified: 2021-09-09

Relational Cartesian product with a SQL select statement
It is rare that you actually want a Cartesian product of tables, but it is a very common error to ask for
one when you do not intend to. Consider what you get if you leave off the join condition in an
attempted equi-join using the first style demonstrated above:
select *
from <tbl1>, <tbl2>;

...where you really intended:
select *
from <tbl1>, <tbl2>
where <tbl1.join-col> = <tbl2.join-col>;

According to the basic SQL select statement semantics, that first statement above determines the
Cartesian product of tbl1 and tbl2 -- and since there is no join condition, all of the rows of the
Cartesian product are selected, and all of its columns projected. Thus, the result is just the Cartesian
product of those two tables -- for a tbl1 with m rows and a tbl2 with n rows, all m*n rows of that
Cartesian product!

If you are looking at an equi-join or natural join result, and realize there are way too many rows in it,
the first thing you should suspect is an inadvertent Cartesian product, and you should check if you have
left out the necessary join condition!

Quick note, before we go on: you know that computers do not handle ambiguity well. That applies to
SQL as well. No two columns within the Cartesian product of the from clause of a SQL select
statement can have the same name. This isn't a problem, however, because columns in two tables that
otherwise would have the same name are really considered to have the name
<tbl-name>.<column-name>. So, when a from clause has:
from empl, dept

...dept's dept_num column has the name dept.dept_num, empl's dept_num column has the
name empl.dept_num, and there is no ambiguity.

However, when you are specifying columns in the select clause or the where clause, you must give
unambiguous column names as well. So, if a column name appears in more than one table in a
select statement's from clause, you must precede that column name by the table name and a period
everywhere else within that select statement -- as empl.dept_num or dept.dept_num
rather than simply as dept_num. (Yes, that includes within the select clause! You'll see an instance
of this in the next example.)

Relational natural join with a SQL select statement
There is no reasonable short-cut to easily get a natural join using a SQL select statement -- it is like
the equi-join, but you have to explicitly project in the select clause all of the columns except the
"duplicate" one you'd like to omit.
select <every-column-except-the-duplicate-column-you'd-like-to-omit>

CS 325 - SQL Reading Packet 2: "Writing relational operations using SQL" p. 13
Sharon Tuttle - last modified: 2021-09-09

Relational Cartesian product with a SQL select statement
It is rare that you actually want a Cartesian product of tables, but it is a very common error to ask for
one when you do not intend to. Consider what you get if you leave off the join condition in an
attempted equi-join using the first style demonstrated above:
select *
from <tbl1>, <tbl2>;

...where you really intended:
select *
from <tbl1>, <tbl2>
where <tbl1.join-col> = <tbl2.join-col>;

According to the basic SQL select statement semantics, that first statement above determines the
Cartesian product of tbl1 and tbl2 -- and since there is no join condition, all of the rows of the
Cartesian product are selected, and all of its columns projected. Thus, the result is just the Cartesian
product of those two tables -- for a tbl1 with m rows and a tbl2 with n rows, all m*n rows of that
Cartesian product!

If you are looking at an equi-join or natural join result, and realize there are way too many rows in it,
the first thing you should suspect is an inadvertent Cartesian product, and you should check if you have
left out the necessary join condition!

Quick note, before we go on: you know that computers do not handle ambiguity well. That applies to
SQL as well. No two columns within the Cartesian product of the from clause of a SQL select
statement can have the same name. This isn't a problem, however, because columns in two tables that
otherwise would have the same name are really considered to have the name
<tbl-name>.<column-name>. So, when a from clause has:
from empl, dept

...dept's dept_num column has the name dept.dept_num, empl's dept_num column has the
name empl.dept_num, and there is no ambiguity.

However, when you are specifying columns in the select clause or the where clause, you must give
unambiguous column names as well. So, if a column name appears in more than one table in a
select statement's from clause, you must precede that column name by the table name and a period
everywhere else within that select statement -- as empl.dept_num or dept.dept_num
rather than simply as dept_num. (Yes, that includes within the select clause! You'll see an instance
of this in the next example.)

Relational natural join with a SQL select statement
There is no reasonable short-cut to easily get a natural join using a SQL select statement -- it is like
the equi-join, but you have to explicitly project in the select clause all of the columns except the
"duplicate" one you'd like to omit.
select <every-column-except-the-duplicate-column-you'd-like-to-omit>

CS 325 - SQL Reading Packet 2: "Writing relational operations using SQL" p. 14
Sharon Tuttle - last modified: 2021-09-09

from <tbl1>, <tbl2>
where <tbl1.join-col> = <tbl2.join-col>;

select <every-column-except-the-duplicate-column-you'd-like-to-omit>
from <tbl1> join <tbl2>
 on <tbl1.join-col> = <tbl2.join-col>;

As an example, each of the following results in the natural join of the tables empl and dept using the
join condition empl.dept_num = dept.dept_num:
select empl_num, empl_last_name, job_title, mgr, hiredate,
 salary, commission, empl.dept_num, dept_name, dept_loc
from empl, dept
where empl.dept_num = dept.dept_num;

select empl_num, empl_last_name, job_title, mgr, hiredate,
 salary, commission, empl.dept_num, dept_name, dept_loc
from empl join dept
 on empl.dept_num = dept.dept_num;

The result of either of these should display as:
EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
DEPT_NAME DEPT_LOC
--------------- ---------------
7839 King President 17-NOV-11 5000 500
Management New York

7566 Jones Manager 7839 02-APR-12 2975 200
Research Dallas

7698 Blake Manager 7839 01-MAY-13 2850 300
Sales Chicago

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
DEPT_NAME DEPT_LOC
--------------- ---------------
7782 Raimi Manager 7839 09-JUN-12 2450 100
Accounting New York

7902 Ford Analyst 7566 03-DEC-12 3000 200
Research Dallas

7369 Smith Clerk 7902 17-DEC-12 800 200
Research Dallas

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
DEPT_NAME DEPT_LOC
--------------- ---------------
7499 Michaels Sales 7698 20-FEB-18 1600 300 300
Sales Chicago

CS 325 - SQL Reading Packet 2: "Writing relational operations using SQL" p. 14
Sharon Tuttle - last modified: 2021-09-09

from <tbl1>, <tbl2>
where <tbl1.join-col> = <tbl2.join-col>;

select <every-column-except-the-duplicate-column-you'd-like-to-omit>
from <tbl1> join <tbl2>
 on <tbl1.join-col> = <tbl2.join-col>;

As an example, each of the following results in the natural join of the tables empl and dept using the
join condition empl.dept_num = dept.dept_num:
select empl_num, empl_last_name, job_title, mgr, hiredate,
 salary, commission, empl.dept_num, dept_name, dept_loc
from empl, dept
where empl.dept_num = dept.dept_num;

select empl_num, empl_last_name, job_title, mgr, hiredate,
 salary, commission, empl.dept_num, dept_name, dept_loc
from empl join dept
 on empl.dept_num = dept.dept_num;

The result of either of these should display as:
EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
DEPT_NAME DEPT_LOC
--------------- ---------------
7839 King President 17-NOV-11 5000 500
Management New York

7566 Jones Manager 7839 02-APR-12 2975 200
Research Dallas

7698 Blake Manager 7839 01-MAY-13 2850 300
Sales Chicago

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
DEPT_NAME DEPT_LOC
--------------- ---------------
7782 Raimi Manager 7839 09-JUN-12 2450 100
Accounting New York

7902 Ford Analyst 7566 03-DEC-12 3000 200
Research Dallas

7369 Smith Clerk 7902 17-DEC-12 800 200
Research Dallas

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
DEPT_NAME DEPT_LOC
--------------- ---------------
7499 Michaels Sales 7698 20-FEB-18 1600 300 300
Sales Chicago

CS 325 - SQL Reading Packet 2: "Writing relational operations using SQL" p. 15
Sharon Tuttle - last modified: 2021-09-09

7521 Ward Sales 7698 22-FEB-19 1250 500 300
Sales Chicago

7654 Martin Sales 7698 28-SEP-18 1250 1400 300
Sales Chicago

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
DEPT_NAME DEPT_LOC
--------------- ---------------
7788 Scott Analyst 7566 09-NOV-18 3000 200
Research Dallas

7844 Turner Sales 7698 08-SEP-19 1500 0 300
Sales Chicago

7876 Adams Clerk 7788 23-SEP-18 1100 400
Operations Boston

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
DEPT_NAME DEPT_LOC
--------------- ---------------
7900 James Clerk 7698 03-DEC-17 950 300
Sales Chicago

7934 Miller Clerk 7782 23-JAN-16 1300 100
Accounting New York

Here are the same results, reformatted for this reading packet to make sure it is clear what relation is
resulting from this natural join:

empl_
num

empl_last
_name

job_title mgr hiredate salary com
miss
ion

empl.
dept_
num

dept_name dept_loc

7839 King President 17-NOV-11 5000 500 Management New York

7566 Jones Manager 7839 02-APR-12 2975 200 Research Dallas

7698 Blake Manager 7839 01-MAY-13 2850 300 Sales Chicago

7782 Raimi Manager 7839 09-JUN-12 2450 100 Accounting New York

7902 Ford Analyst 7566 03-DEC-12 3000 200 Research Dallas

7369 Smith Clerk 7902 17-DEC-12 800 200 Research Dallas

7499 Michaels Sales 7698 20-FEB-18 1600 300 300 Sales Chicago

7521 Ward Sales 7698 22-FEB-19 1250 500 300 Sales Chicago

7654 Martin Sales 7698 28-SEP-18 1250 1400 300 Sales Chicago

7788 Scott Analyst 7566 09-NOV-18 3000 200 Research Dallas

7844 Turner Sales 7698 08-SEP-19 1500 0 300 Sales Chicago

7876 Adams Clerk 7788 23-SEP-18 1100 400 Operations Boston

CS 325 - SQL Reading Packet 2: "Writing relational operations using SQL" p. 15
Sharon Tuttle - last modified: 2021-09-09

7521 Ward Sales 7698 22-FEB-19 1250 500 300
Sales Chicago

7654 Martin Sales 7698 28-SEP-18 1250 1400 300
Sales Chicago

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
DEPT_NAME DEPT_LOC
--------------- ---------------
7788 Scott Analyst 7566 09-NOV-18 3000 200
Research Dallas

7844 Turner Sales 7698 08-SEP-19 1500 0 300
Sales Chicago

7876 Adams Clerk 7788 23-SEP-18 1100 400
Operations Boston

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
DEPT_NAME DEPT_LOC
--------------- ---------------
7900 James Clerk 7698 03-DEC-17 950 300
Sales Chicago

7934 Miller Clerk 7782 23-JAN-16 1300 100
Accounting New York

Here are the same results, reformatted for this reading packet to make sure it is clear what relation is
resulting from this natural join:

empl_
num

empl_last
_name

job_title mgr hiredate salary com
miss
ion

empl.
dept_
num

dept_name dept_loc

7839 King President 17-NOV-11 5000 500 Management New York

7566 Jones Manager 7839 02-APR-12 2975 200 Research Dallas

7698 Blake Manager 7839 01-MAY-13 2850 300 Sales Chicago

7782 Raimi Manager 7839 09-JUN-12 2450 100 Accounting New York

7902 Ford Analyst 7566 03-DEC-12 3000 200 Research Dallas

7369 Smith Clerk 7902 17-DEC-12 800 200 Research Dallas

7499 Michaels Sales 7698 20-FEB-18 1600 300 300 Sales Chicago

7521 Ward Sales 7698 22-FEB-19 1250 500 300 Sales Chicago

7654 Martin Sales 7698 28-SEP-18 1250 1400 300 Sales Chicago

7788 Scott Analyst 7566 09-NOV-18 3000 200 Research Dallas

7844 Turner Sales 7698 08-SEP-19 1500 0 300 Sales Chicago

7876 Adams Clerk 7788 23-SEP-18 1100 400 Operations Boston

CS 325 - SQL Reading Packet 2: "Writing relational operations using SQL" p. 16
Sharon Tuttle - last modified: 2021-09-09

empl_
num

empl_last
_name

job_title mgr hiredate salary com
miss
ion

empl.
dept_
num

dept_name dept_loc

7900 James Clerk 7698 03-DEC-17 950 300 Sales Chicago

7934 Miller Clerk 7782 23-JAN-16 1300 100 Accounting New York

It does not matter whether you choose to project the empl.dept_num column or the
dept.dept_num column, as long as you only project one of them -- the result is still considered the
natural join of these two tables on that join condition.

Combinations of relational operations using a SQL select
statement
We often perform combinations of relational operations using a SQL select statement; we are not
limited just to the individual relational operations we have just demonstrated. (The point of those
earlier sections was that you can use a SQL select statement to specify each "pure" basic relational
operation, not that you are limited to those.) The SQL select statement makes such combinations
very reasonable, especially once you are comfortable with its semantics as described earlier.

Note that SQL has a Boolean AND operation, for logical and, a Boolean OR operation, for logical or,
and a Boolean NOT operation, for logical not. These can be used to build very sophisticated where
clauses, where you can select a quite-specifically-requested choice of rows from the SQL select's
Cartesian product, including selecting just some of the rows from an equi-join or natural join.

You can also decide to project just some of the columns from some selection or some equi-join or some
natural join. So, in practice, you join only the tables you want (if you include appropriate join
condition(s)...!), select only the rows you want from any joins, and project only the columns you want
from that selection.
select <comma-separated desired expressions to project>
from <tbl>
where <condition to specify desired rows from tbl>;

select <comma-separated desired expressions to project>
from <tbl1>, <tbl2>
where <tbl1.join-col> = <tbl2.join-col>
 and <condition to specify desired rows from join>;

select <comma-separated desired expressions to project>
from <tbl1> join <tbl2>
 on <tbl1.join-col> = <tbl2.join-col>
where <condition to specify desired rows from join>;

That where clause's condition can range from a very simple condition to a quite-complex compound
condition involving any number of and, or, and not operations -- we'll spend more than one future

CS 325 - SQL Reading Packet 2: "Writing relational operations using SQL" p. 16
Sharon Tuttle - last modified: 2021-09-09

empl_
num

empl_last
_name

job_title mgr hiredate salary com
miss
ion

empl.
dept_
num

dept_name dept_loc

7900 James Clerk 7698 03-DEC-17 950 300 Sales Chicago

7934 Miller Clerk 7782 23-JAN-16 1300 100 Accounting New York

It does not matter whether you choose to project the empl.dept_num column or the
dept.dept_num column, as long as you only project one of them -- the result is still considered the
natural join of these two tables on that join condition.

Combinations of relational operations using a SQL select
statement
We often perform combinations of relational operations using a SQL select statement; we are not
limited just to the individual relational operations we have just demonstrated. (The point of those
earlier sections was that you can use a SQL select statement to specify each "pure" basic relational
operation, not that you are limited to those.) The SQL select statement makes such combinations
very reasonable, especially once you are comfortable with its semantics as described earlier.

Note that SQL has a Boolean AND operation, for logical and, a Boolean OR operation, for logical or,
and a Boolean NOT operation, for logical not. These can be used to build very sophisticated where
clauses, where you can select a quite-specifically-requested choice of rows from the SQL select's
Cartesian product, including selecting just some of the rows from an equi-join or natural join.

You can also decide to project just some of the columns from some selection or some equi-join or some
natural join. So, in practice, you join only the tables you want (if you include appropriate join
condition(s)...!), select only the rows you want from any joins, and project only the columns you want
from that selection.
select <comma-separated desired expressions to project>
from <tbl>
where <condition to specify desired rows from tbl>;

select <comma-separated desired expressions to project>
from <tbl1>, <tbl2>
where <tbl1.join-col> = <tbl2.join-col>
 and <condition to specify desired rows from join>;

select <comma-separated desired expressions to project>
from <tbl1> join <tbl2>
 on <tbl1.join-col> = <tbl2.join-col>
where <condition to specify desired rows from join>;

That where clause's condition can range from a very simple condition to a quite-complex compound
condition involving any number of and, or, and not operations -- we'll spend more than one future

CS 325 - SQL Reading Packet 2: "Writing relational operations using SQL" p. 17
Sharon Tuttle - last modified: 2021-09-09

reading packet discussing just some of the available options for the where clause!

By the way -- we aren't actually limited to two tables in the from clause, nor are we limited to table
names in the from clause. But we'll include examples of these in later packets. And, as mentioned
previously, we'll be adding additional optional select statement clauses in later packets as well.

So, for example, what if you would like to project just the job_title and hiredate of empl rows
whose commission is more than 0? This SQL select statement will do so:
select job_title, hiredate
from empl
where commission > 0;

...with the results:
JOB_TITLE HIREDATE
---------- ---------
Sales 20-FEB-18
Sales 22-FEB-19
Sales 28-SEP-18

Note that, while there happen to be no duplicate rows in this result, for different empl table contents,
this may produce duplicate rows -- there is no distinct in the select clause to prevent them.
Also, are you surprised at the number of rows in this result? A column with no value is not the same as
a column with a value of 0 -- the condition commission > 0 is not true for a row whose
commission is null.

And what if you'd like to project just the empl_last_name, dept_name, and dept_loc from the
selection of rows from the equi-join of empl and dept on the join condition empl.dept_num =
dept.dept_num for which the hiredate is later than June 1, 2018? Either of these will do so:
select empl_last_name, dept_name, dept_loc
from empl, dept
where empl.dept_num = dept.dept_num
and hiredate > '01-JUN-2018';

select empl_last_name, dept_name, dept_loc
from empl join dept
 on empl.dept_num = dept.dept_num
where hiredate > '01-JUN-2018';

And, both of these have the result:
EMPL_LAST_NAME DEPT_NAME DEPT_LOC
--------------- --------------- ---------------
Scott Research Dallas
Turner Sales Chicago
Martin Sales Chicago
Ward Sales Chicago
Adams Operations Boston

CS 325 - SQL Reading Packet 2: "Writing relational operations using SQL" p. 17
Sharon Tuttle - last modified: 2021-09-09

reading packet discussing just some of the available options for the where clause!

By the way -- we aren't actually limited to two tables in the from clause, nor are we limited to table
names in the from clause. But we'll include examples of these in later packets. And, as mentioned
previously, we'll be adding additional optional select statement clauses in later packets as well.

So, for example, what if you would like to project just the job_title and hiredate of empl rows
whose commission is more than 0? This SQL select statement will do so:
select job_title, hiredate
from empl
where commission > 0;

...with the results:
JOB_TITLE HIREDATE
---------- ---------
Sales 20-FEB-18
Sales 22-FEB-19
Sales 28-SEP-18

Note that, while there happen to be no duplicate rows in this result, for different empl table contents,
this may produce duplicate rows -- there is no distinct in the select clause to prevent them.
Also, are you surprised at the number of rows in this result? A column with no value is not the same as
a column with a value of 0 -- the condition commission > 0 is not true for a row whose
commission is null.

And what if you'd like to project just the empl_last_name, dept_name, and dept_loc from the
selection of rows from the equi-join of empl and dept on the join condition empl.dept_num =
dept.dept_num for which the hiredate is later than June 1, 2018? Either of these will do so:
select empl_last_name, dept_name, dept_loc
from empl, dept
where empl.dept_num = dept.dept_num
and hiredate > '01-JUN-2018';

select empl_last_name, dept_name, dept_loc
from empl join dept
 on empl.dept_num = dept.dept_num
where hiredate > '01-JUN-2018';

And, both of these have the result:
EMPL_LAST_NAME DEPT_NAME DEPT_LOC
--------------- --------------- ---------------
Scott Research Dallas
Turner Sales Chicago
Martin Sales Chicago
Ward Sales Chicago
Adams Operations Boston

CS 325 - SQL Reading Packet 2: "Writing relational operations using SQL" p. 18
Sharon Tuttle - last modified: 2021-09-09

Do you see that I could have described the above as being a further projection of either the equi-join or
the natural join of empl and dept with that join condition? It is projecting just some of the columns
from either one, after all. So, in practice, many people just say they are projecting just certain columns
from the join of these tables. (That is, if someone says they are projecting just some columns from a
join of two tables, it should be safe to assume that equi-join or natural join is intended -- if someone
means one of the other types of joins, they should specify that explicitly. And we'll do so when we
introduce a few of these other types of joins later in the semester.)

CS 325 - SQL Reading Packet 2: "Writing relational operations using SQL" p. 18
Sharon Tuttle - last modified: 2021-09-09

Do you see that I could have described the above as being a further projection of either the equi-join or
the natural join of empl and dept with that join condition? It is projecting just some of the columns
from either one, after all. So, in practice, many people just say they are projecting just certain columns
from the join of these tables. (That is, if someone says they are projecting just some columns from a
join of two tables, it should be safe to assume that equi-join or natural join is intended -- if someone
means one of the other types of joins, they should specify that explicitly. And we'll do so when we
introduce a few of these other types of joins later in the semester.)

	Sources:
	The basic SQL select statement syntax and semantics
	Interlude: some example tables, and a few words on foreign keys, other table constraints, and insert statements
	Using SQL select statements for the classic relational operations
	Relational projection with a SQL select statement
	Relational Selection with a SQL select statement
	Relational equi-join with a SQL select statement
	Relational Cartesian product with a SQL select statement
	Relational natural join with a SQL select statement

	Combinations of relational operations using a SQL select statement

