
CS 325 - SQL Reading Packet 4: "Sub-selects, concatenating columns, and projecting literals" p. 1
Sharon Tuttle - last modified: 2021-09-09

CS 325 - SQL Reading Packet 4:
"Sub-selects, concatenating columns, and projecting

literals"

SOURCES:
• "Oracle9i Programming: A Primer," Rajshekhar Sunderraman, Addison Wesley.

• Classic Oracle example tables empl and dept, adapted somewhat over the years

Aside: two useful SQL*Plus commands for debugging
Before we get started discussing nested selects/subselects, you may have noticed that, when you look at
the spooled results of running a SQL script (or when you look at a SQL script's results within
sqlplus), it can be hard to figure out which command resulted in which results.

Here are two SQL*Plus commands that can help with this: prompt and set echo on

The prompt command simply displays whatever text follows it to the screen. So, for example, if you
are in SQL*Plus, and at the SQL> prompt you type:
SQL> prompt MOOOO

...you'll simply see:
MOOO

...which might not seem very useful. But if you put a prompt command in a SQL script, that extra text
can make your output results easier to read and follow. For example, if you had the following inside of
a SQL script ck-this.sql:
prompt dept table:

select *
from dept;

...then, when you run that script in SQL*Plus:
SQL> start ck-this.sql

...now you have a little label before this table's contents:
dept table:

DEP DEPT_NAME DEPT_LOC
--- --------------- ---------------
100 Accounting New York
200 Research Dallas
300 Sales Chicago
400 Operations Boston
500 Management New York

CS 325 - SQL Reading Packet 4: "Sub-selects, concatenating columns, and projecting literals" p. 1
Sharon Tuttle - last modified: 2021-09-09

CS 325 - SQL Reading Packet 4:
"Sub-selects, concatenating columns, and projecting

literals"

SOURCES:
• "Oracle9i Programming: A Primer," Rajshekhar Sunderraman, Addison Wesley.

• Classic Oracle example tables empl and dept, adapted somewhat over the years

Aside: two useful SQL*Plus commands for debugging
Before we get started discussing nested selects/subselects, you may have noticed that, when you look at
the spooled results of running a SQL script (or when you look at a SQL script's results within
sqlplus), it can be hard to figure out which command resulted in which results.

Here are two SQL*Plus commands that can help with this: prompt and set echo on

The prompt command simply displays whatever text follows it to the screen. So, for example, if you
are in SQL*Plus, and at the SQL> prompt you type:
SQL> prompt MOOOO

...you'll simply see:
MOOO

...which might not seem very useful. But if you put a prompt command in a SQL script, that extra text
can make your output results easier to read and follow. For example, if you had the following inside of
a SQL script ck-this.sql:
prompt dept table:

select *
from dept;

...then, when you run that script in SQL*Plus:
SQL> start ck-this.sql

...now you have a little label before this table's contents:
dept table:

DEP DEPT_NAME DEPT_LOC
--- --------------- ---------------
100 Accounting New York
200 Research Dallas
300 Sales Chicago
400 Operations Boston
500 Management New York

CS 325 - SQL Reading Packet 4: "Sub-selects, concatenating columns, and projecting literals" p. 2
Sharon Tuttle - last modified: 2021-09-09

Note that a prompt with no text simply prints a blank line to the screen (or to the spool file), which is
also a nice effect at times.

I will likely start having you precede homework and lab exercise problems with prompt commands
indicating which problem the subsequent statements are for, since it makes it easier for both of us to be
able to tell which results are which!

The other command is not as "pretty" as prompt, but is still useful to know about. In SQL*Plus, you
can set various aspects of the SQL*Plus environment, if you will, using the set command. (We'll be
doing a lot with this when we talk about creating "prettier" SQL*Plus-based plain-text reports, later in
the semester.)

echo, for example, is something you can set on or off in SQL*Plus. By default, it is set to off. But if
you type the SQL*Plus command:
set echo on

... then that specifies that you'd like to turn echoing on within your SQL*Plus session. When echoing is
turned on, and you run a SQL script, SQL*Plus then echoes, or outputs, each command in the script
immediately before that command's results. That is, if you had set echoing on and then ran the above
script ck-this.sql, you'd actually see:
SQL> prompt dept table:
dept table:
SQL>
SQL> select *
 2 from dept;

DEP DEPT_NAME DEPT_LOC
--- --------------- ---------------
100 Accounting New York
200 Research Dallas
300 Sales Chicago
400 Operations Boston
500 Management New York

SQL>

...and then you'd see the dept table contents (give or take some blank lines).

SQL*Plus will continue this behavior for the rest of your current SQL*Plus session or until you turn
echoing off, using the command:
set echo off

The behavior when echoing is turned on can be annoying when you are not debugging, so you may
want to simply use it when you need it (for example, for debugging), and be sure to set echoing off
again when you are done debugging (and before your final run of a homework script...!)

Nested selects/subselects
Recall that, last time, we wrote select statements -- queries -- with more interesting where clauses.

CS 325 - SQL Reading Packet 4: "Sub-selects, concatenating columns, and projecting literals" p. 2
Sharon Tuttle - last modified: 2021-09-09

Note that a prompt with no text simply prints a blank line to the screen (or to the spool file), which is
also a nice effect at times.

I will likely start having you precede homework and lab exercise problems with prompt commands
indicating which problem the subsequent statements are for, since it makes it easier for both of us to be
able to tell which results are which!

The other command is not as "pretty" as prompt, but is still useful to know about. In SQL*Plus, you
can set various aspects of the SQL*Plus environment, if you will, using the set command. (We'll be
doing a lot with this when we talk about creating "prettier" SQL*Plus-based plain-text reports, later in
the semester.)

echo, for example, is something you can set on or off in SQL*Plus. By default, it is set to off. But if
you type the SQL*Plus command:
set echo on

... then that specifies that you'd like to turn echoing on within your SQL*Plus session. When echoing is
turned on, and you run a SQL script, SQL*Plus then echoes, or outputs, each command in the script
immediately before that command's results. That is, if you had set echoing on and then ran the above
script ck-this.sql, you'd actually see:
SQL> prompt dept table:
dept table:
SQL>
SQL> select *
 2 from dept;

DEP DEPT_NAME DEPT_LOC
--- --------------- ---------------
100 Accounting New York
200 Research Dallas
300 Sales Chicago
400 Operations Boston
500 Management New York

SQL>

...and then you'd see the dept table contents (give or take some blank lines).

SQL*Plus will continue this behavior for the rest of your current SQL*Plus session or until you turn
echoing off, using the command:
set echo off

The behavior when echoing is turned on can be annoying when you are not debugging, so you may
want to simply use it when you need it (for example, for debugging), and be sure to set echoing off
again when you are done debugging (and before your final run of a homework script...!)

Nested selects/subselects
Recall that, last time, we wrote select statements -- queries -- with more interesting where clauses.

CS 325 - SQL Reading Packet 4: "Sub-selects, concatenating columns, and projecting literals" p. 3
Sharon Tuttle - last modified: 2021-09-09

We're taking the where clause possibilities even further in this week's lab exercise.

You can actually write another select statement within a where clause (or even within a from
clause, it turns out). When you have a select statement inside of a select statement like this, that's
called a nested select, or a subselect -- a select statement nested within another select statement,
a subselect inside of a select statement.

It can be helpful to develop select statements using nested selects from the "inside-out"
(although that isn't required). For example, what if you want to find out the employee number for the
manager of the highest-paid clerk(s)?

If you are not sure how else to start, you might start by finding out the salary of the highest-paid
clerk(s):
select max(salary)
from empl
where job_title = 'Clerk';

Note that this doesn't tell you which clerk or clerks have this salary -- but it does give that highest
salary for any clerk.

If the empl table has the contents as inserted by the SQL script set-up-ex-tbls.sql (which
we'll assume for all of the examples in this reading packet), then this query has the results:
MAX(SALARY)

 1300

So, to find out the values of mgr for clerks with that salary (since there could be more than one, after
all), you could select the mgr values of clerks with that highest salary by nesting the above select
within another select as so:
select mgr
from empl
where job_title = 'Clerk'
 and salary =
 /* this subselect COMPUTES the desired salary to
 compare salary to!
 */

 (select max(salary)
 from empl
 where job_title = 'Clerk');

Make sure you understand: in the "outer" query, the rows of empl are selected for which job_title
is 'Clerk' and for which the salary is equal to that maximum salary that is the result of the
"inner", nested query (or subquery). Then the mgr of those selected row or rows is projected as the
final result. You never "see" the subquery's results -- they are simply used in selecting the desired rows
for the "outer" query.

This query has the results:
MGR

CS 325 - SQL Reading Packet 4: "Sub-selects, concatenating columns, and projecting literals" p. 3
Sharon Tuttle - last modified: 2021-09-09

We're taking the where clause possibilities even further in this week's lab exercise.

You can actually write another select statement within a where clause (or even within a from
clause, it turns out). When you have a select statement inside of a select statement like this, that's
called a nested select, or a subselect -- a select statement nested within another select statement,
a subselect inside of a select statement.

It can be helpful to develop select statements using nested selects from the "inside-out"
(although that isn't required). For example, what if you want to find out the employee number for the
manager of the highest-paid clerk(s)?

If you are not sure how else to start, you might start by finding out the salary of the highest-paid
clerk(s):
select max(salary)
from empl
where job_title = 'Clerk';

Note that this doesn't tell you which clerk or clerks have this salary -- but it does give that highest
salary for any clerk.

If the empl table has the contents as inserted by the SQL script set-up-ex-tbls.sql (which
we'll assume for all of the examples in this reading packet), then this query has the results:
MAX(SALARY)

 1300

So, to find out the values of mgr for clerks with that salary (since there could be more than one, after
all), you could select the mgr values of clerks with that highest salary by nesting the above select
within another select as so:
select mgr
from empl
where job_title = 'Clerk'
 and salary =
 /* this subselect COMPUTES the desired salary to
 compare salary to!
 */

 (select max(salary)
 from empl
 where job_title = 'Clerk');

Make sure you understand: in the "outer" query, the rows of empl are selected for which job_title
is 'Clerk' and for which the salary is equal to that maximum salary that is the result of the
"inner", nested query (or subquery). Then the mgr of those selected row or rows is projected as the
final result. You never "see" the subquery's results -- they are simply used in selecting the desired rows
for the "outer" query.

This query has the results:
MGR

CS 325 - SQL Reading Packet 4: "Sub-selects, concatenating columns, and projecting literals" p. 4
Sharon Tuttle - last modified: 2021-09-09

7782

What if you decide you'd like the last names of such managers? That would provide an excuse to note
that there isn't any limit to how deeply you can nest -- a subquery can contain a subquery, which can
contain a subquery, as deeply as you want...!
select empl_last_name
from empl
where empl_num in
 /* "build" the list of desired managers' empl nums */

 (select mgr
 from empl
 where job_title = 'Clerk'
 and salary =

 (select max(salary)
 from empl
 where job_title = 'Clerk'));

This query has the results:
EMPL_LAST_NAME

Raimi

You can have more than one table involved in nested selects (although the columns relating such tables
will also often be involved). For example, what if you would like the names and salaries of employees
who work in Dallas?

You can find the dept_num's for departments whose location is Dallas with the following query:
select dept_num
from dept
where dept_loc = 'Dallas';

This query has the results:
DEP

200

So, to find the names and salaries of employees who work in Dallas, the following query featuring a
nested query/subquery would work:
select empl_last_name, salary
from empl
where dept_num in

 (select dept_num
 from dept
 where dept_loc = 'Dallas');

CS 325 - SQL Reading Packet 4: "Sub-selects, concatenating columns, and projecting literals" p. 4
Sharon Tuttle - last modified: 2021-09-09

7782

What if you decide you'd like the last names of such managers? That would provide an excuse to note
that there isn't any limit to how deeply you can nest -- a subquery can contain a subquery, which can
contain a subquery, as deeply as you want...!
select empl_last_name
from empl
where empl_num in
 /* "build" the list of desired managers' empl nums */

 (select mgr
 from empl
 where job_title = 'Clerk'
 and salary =

 (select max(salary)
 from empl
 where job_title = 'Clerk'));

This query has the results:
EMPL_LAST_NAME

Raimi

You can have more than one table involved in nested selects (although the columns relating such tables
will also often be involved). For example, what if you would like the names and salaries of employees
who work in Dallas?

You can find the dept_num's for departments whose location is Dallas with the following query:
select dept_num
from dept
where dept_loc = 'Dallas';

This query has the results:
DEP

200

So, to find the names and salaries of employees who work in Dallas, the following query featuring a
nested query/subquery would work:
select empl_last_name, salary
from empl
where dept_num in

 (select dept_num
 from dept
 where dept_loc = 'Dallas');

CS 325 - SQL Reading Packet 4: "Sub-selects, concatenating columns, and projecting literals" p. 5
Sharon Tuttle - last modified: 2021-09-09

You are selecting the rows of empl whose dept_num happens to be in the set of dept_num's whose
location is Dallas, and are then projecting the empl_last_name and salary from just those rows.

So, this query has the results:
EMPL_LAST_NAME SALARY
--------------- ----------
Scott 3000
Jones 2975
Ford 3000
Smith 800

Some common errors related to nested selects/subselects
Now, there are a number of common errors that people make related to nested selects.

One is that some students will look at queries such as the above, see that "where job_title =
'Clerk'" appears twice, and think that there is some way to get rid of one of what they see as
"duplicated" where conditions. This desire to abstract out repeated code is admirable in many kinds of
programming, but it is a mistake here -- the "innermost" query is projecting the maximum salary of just
clerks, and so its where clause is essential, and the "middle" query is supposed to project just the mgr
column of employees who are both clerks and whose salary is the maximum for a clerk, and so its
where clause is essential, too. You don't want the mgr of a sales employee who may happen to have
the same salary as the highest paid clerk, for example! The moral here is to be careful that select
statements at each level are selecting exactly the rows they need.

Another issue is related to the following: you'll notice that, in the previous examples, each subselect is
the right-hand-side of some operation -- the right-hand-side of an =, for example, or the right-hand-side
of an in operation. A sub-select has to be placed somewhere appropriate. (That's not to say that = or
in are the only options for operators along with a subselect -- there are numerous others as well. These
two operators are just quite frequent.)

Does it matter whether you use = or in with a subselect? It can matter -- you need to know that =
expects a single value on its right-hand-side. Since projecting max(salary) is guaranteed to always
project exactly one value, it is safe to have that subselect on the right-hand-side of an =, as in the above
example. However, if a subselect might ever project more than one value, it is better style (because it
will remain correct even as rows are added and deleted) to use in. You should remember that in is
true if the value on the left-hand-side is equal to any of the set of values on its right-hand-side -- when
that right-hand-side is a subselect, then that subselect is essentially defining the set of values being
compared. There is no problem if this set has just one value in it -- a set can have a single value. It can
even be empty (although of course the in will not be satisfied, then). So, in is safer if you have any
doubt how many values will be projected by a subselect.

What if you'd just like the last names of all managers of clerks? The following query will give you this
information:
select empl_last_name
from empl
where empl_num in

 (select mgr
 from empl

CS 325 - SQL Reading Packet 4: "Sub-selects, concatenating columns, and projecting literals" p. 5
Sharon Tuttle - last modified: 2021-09-09

You are selecting the rows of empl whose dept_num happens to be in the set of dept_num's whose
location is Dallas, and are then projecting the empl_last_name and salary from just those rows.

So, this query has the results:
EMPL_LAST_NAME SALARY
--------------- ----------
Scott 3000
Jones 2975
Ford 3000
Smith 800

Some common errors related to nested selects/subselects
Now, there are a number of common errors that people make related to nested selects.

One is that some students will look at queries such as the above, see that "where job_title =
'Clerk'" appears twice, and think that there is some way to get rid of one of what they see as
"duplicated" where conditions. This desire to abstract out repeated code is admirable in many kinds of
programming, but it is a mistake here -- the "innermost" query is projecting the maximum salary of just
clerks, and so its where clause is essential, and the "middle" query is supposed to project just the mgr
column of employees who are both clerks and whose salary is the maximum for a clerk, and so its
where clause is essential, too. You don't want the mgr of a sales employee who may happen to have
the same salary as the highest paid clerk, for example! The moral here is to be careful that select
statements at each level are selecting exactly the rows they need.

Another issue is related to the following: you'll notice that, in the previous examples, each subselect is
the right-hand-side of some operation -- the right-hand-side of an =, for example, or the right-hand-side
of an in operation. A sub-select has to be placed somewhere appropriate. (That's not to say that = or
in are the only options for operators along with a subselect -- there are numerous others as well. These
two operators are just quite frequent.)

Does it matter whether you use = or in with a subselect? It can matter -- you need to know that =
expects a single value on its right-hand-side. Since projecting max(salary) is guaranteed to always
project exactly one value, it is safe to have that subselect on the right-hand-side of an =, as in the above
example. However, if a subselect might ever project more than one value, it is better style (because it
will remain correct even as rows are added and deleted) to use in. You should remember that in is
true if the value on the left-hand-side is equal to any of the set of values on its right-hand-side -- when
that right-hand-side is a subselect, then that subselect is essentially defining the set of values being
compared. There is no problem if this set has just one value in it -- a set can have a single value. It can
even be empty (although of course the in will not be satisfied, then). So, in is safer if you have any
doubt how many values will be projected by a subselect.

What if you'd just like the last names of all managers of clerks? The following query will give you this
information:
select empl_last_name
from empl
where empl_num in

 (select mgr
 from empl

CS 325 - SQL Reading Packet 4: "Sub-selects, concatenating columns, and projecting literals" p. 6
Sharon Tuttle - last modified: 2021-09-09

 where job_title = 'Clerk');

This query has the results:
EMPL_LAST_NAME

Blake
Raimi
Scott
Ford

If you replace the in in the above example with =, you will see the error message:
ERROR at line 3:
ORA-01427: single-row subquery returns more than one row

You'll see this whenever you use the = operator with a subquery that returns more than one row.

Another common error is to think you can use aggregate functions anywhere you would like. Until we
add more features to our basic select statement, note that aggregate functions can only be used
within a select clause, to specify that a computation of particular columns from particular rows is to
be projected. (Even after adding those features, where you can use aggregate function calls is still quite
constrained.)

The most common error I see students making in this regard is to attempt to use aggregate functions
"by themselves" within a where clause:
/* COMMON ERROR: aggregate functions ONLY work in a query -- they
 don't make sense "on their own". The following WON'T WORK
 (and what would it mean, anyway? max salary of WHAT rows?)
*/

select empl_num
from empl
where job_title = 'Clerk'
and salary = max(salary);

You'll see the following error message for the above query:
ERROR at line 4:
ORA-00934: group function is not allowed here

So, if you see an error message noting that "group function is not allowed here", you
have probably used an aggregate function call somewhere that it does not belong.

Nesting a select within a from clause
You will recall that, in the from clause, you put the table whose rows (or the tables whose Cartesian
product) you want. Usually we use table names -- but since the result of a select statement is a
relation/table, albeit unnamed, you can use a subselect or subselects within a from clause as well. (It is

CS 325 - SQL Reading Packet 4: "Sub-selects, concatenating columns, and projecting literals" p. 6
Sharon Tuttle - last modified: 2021-09-09

 where job_title = 'Clerk');

This query has the results:
EMPL_LAST_NAME

Blake
Raimi
Scott
Ford

If you replace the in in the above example with =, you will see the error message:
ERROR at line 3:
ORA-01427: single-row subquery returns more than one row

You'll see this whenever you use the = operator with a subquery that returns more than one row.

Another common error is to think you can use aggregate functions anywhere you would like. Until we
add more features to our basic select statement, note that aggregate functions can only be used
within a select clause, to specify that a computation of particular columns from particular rows is to
be projected. (Even after adding those features, where you can use aggregate function calls is still quite
constrained.)

The most common error I see students making in this regard is to attempt to use aggregate functions
"by themselves" within a where clause:
/* COMMON ERROR: aggregate functions ONLY work in a query -- they
 don't make sense "on their own". The following WON'T WORK
 (and what would it mean, anyway? max salary of WHAT rows?)
*/

select empl_num
from empl
where job_title = 'Clerk'
and salary = max(salary);

You'll see the following error message for the above query:
ERROR at line 4:
ORA-00934: group function is not allowed here

So, if you see an error message noting that "group function is not allowed here", you
have probably used an aggregate function call somewhere that it does not belong.

Nesting a select within a from clause
You will recall that, in the from clause, you put the table whose rows (or the tables whose Cartesian
product) you want. Usually we use table names -- but since the result of a select statement is a
relation/table, albeit unnamed, you can use a subselect or subselects within a from clause as well. (It is

CS 325 - SQL Reading Packet 4: "Sub-selects, concatenating columns, and projecting literals" p. 7
Sharon Tuttle - last modified: 2021-09-09

the same as an unnamed table, you see.)

That is, the following is a perfectly legal select statement:
select empl_last_name, dept_name
from (select *
 from empl e, dept d
 where e.dept_num = d.dept_num)
where dept_name = 'Operations';

This query has the results:
EMPL_LAST_NAME DEPT_NAME
--------------- ---------------
Adams Operations

The subselect projects the equi-join of empl and dept, so the from of the outer select is the rows
of that equi-join. The where clause of the outer select's join then selects only those rows of the
resulting equi-join in which the dept_name is 'Operations', and then the empl_last_name
and dept_name columns from those selected rows are projected.

Do note that, as far as the outer select is concerned, the names of the columns it "knows" are exactly
those projected by the subselect in the from clause -- that is, if you put:
select ename
from (select dept_name dname, empl_last_name ename
 from empl e, dept d
 where e.dept_num = d.dept_num)
where dname = 'Operations';

...this will work, but only if you use ename and dname in the outer select. As far as the outer query is
concerned, the from clause here contains a 2-column table whose columns' names are dname and
ename, respectively.

This query has the results:
ENAME

Adams

More nested select examples
Here are some more examples involving nested selects.

What if you would like to select the rows for employees who are clerks making more than the lowest-
paid sales employee?

You can find the salary of the lowest-paid sales employee using the query:
select min(salary)
from empl
where job_title = 'Sales';

CS 325 - SQL Reading Packet 4: "Sub-selects, concatenating columns, and projecting literals" p. 7
Sharon Tuttle - last modified: 2021-09-09

the same as an unnamed table, you see.)

That is, the following is a perfectly legal select statement:
select empl_last_name, dept_name
from (select *
 from empl e, dept d
 where e.dept_num = d.dept_num)
where dept_name = 'Operations';

This query has the results:
EMPL_LAST_NAME DEPT_NAME
--------------- ---------------
Adams Operations

The subselect projects the equi-join of empl and dept, so the from of the outer select is the rows
of that equi-join. The where clause of the outer select's join then selects only those rows of the
resulting equi-join in which the dept_name is 'Operations', and then the empl_last_name
and dept_name columns from those selected rows are projected.

Do note that, as far as the outer select is concerned, the names of the columns it "knows" are exactly
those projected by the subselect in the from clause -- that is, if you put:
select ename
from (select dept_name dname, empl_last_name ename
 from empl e, dept d
 where e.dept_num = d.dept_num)
where dname = 'Operations';

...this will work, but only if you use ename and dname in the outer select. As far as the outer query is
concerned, the from clause here contains a 2-column table whose columns' names are dname and
ename, respectively.

This query has the results:
ENAME

Adams

More nested select examples
Here are some more examples involving nested selects.

What if you would like to select the rows for employees who are clerks making more than the lowest-
paid sales employee?

You can find the salary of the lowest-paid sales employee using the query:
select min(salary)
from empl
where job_title = 'Sales';

CS 325 - SQL Reading Packet 4: "Sub-selects, concatenating columns, and projecting literals" p. 8
Sharon Tuttle - last modified: 2021-09-09

This query has the results:
MIN(SALARY)

 1250

Note that you can use >, <, >=, <=, <> and != as well as = as the operator involving a subselect, but
remember that, like =, you should only use them with subselects guaranteed to project exactly one
value.

And so the above query can be a subquery within a query giving the rows from empl for clerks
making more than this minimum sales employee salary as so:
select *
from empl
where job_title = 'Clerk'
 and salary >

 (select min(salary)
 from empl
 where job_title = 'Sales');

This query has the results:
EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
7934 Miller Clerk 7782 23-JAN-16 1300 100

If you'd like to project just the last names of managers of clerks who make more than the average salary
for clerks, then the following select would work:
select empl_last_name
from empl
where empl_num in
 (select mgr
 from empl
 where job_title = 'Clerk'
 and salary >
 (select avg(salary)
 from empl
 where job_title = 'Clerk'));

Note that the innermost select statement is projecting the average salary of all empls whose
job_title is 'Clerk'. The middle select statement is projecting the mgr column for empls
whose job_title is 'Clerk' and whose salary is strictly greater than the average salary for
clerks. And so the outermost select is projecting the last names of employees whose empl_num
happens to be in the set of mgr values for just those clerks.

This query has the results:
EMPL_LAST_NAME

CS 325 - SQL Reading Packet 4: "Sub-selects, concatenating columns, and projecting literals" p. 8
Sharon Tuttle - last modified: 2021-09-09

This query has the results:
MIN(SALARY)

 1250

Note that you can use >, <, >=, <=, <> and != as well as = as the operator involving a subselect, but
remember that, like =, you should only use them with subselects guaranteed to project exactly one
value.

And so the above query can be a subquery within a query giving the rows from empl for clerks
making more than this minimum sales employee salary as so:
select *
from empl
where job_title = 'Clerk'
 and salary >

 (select min(salary)
 from empl
 where job_title = 'Sales');

This query has the results:
EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
7934 Miller Clerk 7782 23-JAN-16 1300 100

If you'd like to project just the last names of managers of clerks who make more than the average salary
for clerks, then the following select would work:
select empl_last_name
from empl
where empl_num in
 (select mgr
 from empl
 where job_title = 'Clerk'
 and salary >
 (select avg(salary)
 from empl
 where job_title = 'Clerk'));

Note that the innermost select statement is projecting the average salary of all empls whose
job_title is 'Clerk'. The middle select statement is projecting the mgr column for empls
whose job_title is 'Clerk' and whose salary is strictly greater than the average salary for
clerks. And so the outermost select is projecting the last names of employees whose empl_num
happens to be in the set of mgr values for just those clerks.

This query has the results:
EMPL_LAST_NAME

CS 325 - SQL Reading Packet 4: "Sub-selects, concatenating columns, and projecting literals" p. 9
Sharon Tuttle - last modified: 2021-09-09

Raimi
Scott

What if you decide you'd like both the manager's name, and the clerk's name, and the salary, for
clerk(s) making the highest salary? You can combine a join of the empl table with itself and a nested
select to make this work:
select e2.empl_last_name "Manager" , e1.empl_last_name "Clerk's name",
 e1.salary "Clerk's salary"
from empl e1, empl e2
where e1.mgr = e2.empl_num
 and e1.job_title = 'Clerk'
 and e1.salary =
 (select max(salary)

 from empl
 where job_title = 'Clerk');

Or, using ANSI join notation,
select e2.empl_last_name "Manager" , e1.empl_last_name "Clerk's name",
 e1.salary "Clerk's salary"
from empl e1 join empl e2
 on e1.mgr = e2.empl_num
where e1.job_title = 'Clerk'
 and e1.salary =
 (select max(salary)

 from empl
 where job_title = 'Clerk');

Both of these queries have the results:
Manager Clerk's name Clerk's salary
--------------- --------------- --------------
Raimi Miller 1300

Reading the above queries is a good test of your basic select statement understanding. Walking
through the first version (that isn't using the ANSI join notation):

1. the outer select's from clause is computing a Cartesian product of the empl table with itself, so
the result is all combinations of the empl table rows with empl table rows. But, table aliases are
being used, so the columns of the first empl table have the names e1.empl_last_name,
e1.empl_num, e1.salary, etc. And the columns of the second empl table have the names
e2.empl_last_name, e2.empl_num, e2.salary, etc.

2. the outer select's where clause is then selecting only those rows from 1's Cartesian product in
which:
e1.mgr = e2.empl_num

...can you see that now, the only rows left are those that combine an employee's information with the
information about that employee's manager? If e1.mgr = e2.empl_num, then all of the e2
columns are the data about the e1 columns' manager.

CS 325 - SQL Reading Packet 4: "Sub-selects, concatenating columns, and projecting literals" p. 9
Sharon Tuttle - last modified: 2021-09-09

Raimi
Scott

What if you decide you'd like both the manager's name, and the clerk's name, and the salary, for
clerk(s) making the highest salary? You can combine a join of the empl table with itself and a nested
select to make this work:
select e2.empl_last_name "Manager" , e1.empl_last_name "Clerk's name",
 e1.salary "Clerk's salary"
from empl e1, empl e2
where e1.mgr = e2.empl_num
 and e1.job_title = 'Clerk'
 and e1.salary =
 (select max(salary)

 from empl
 where job_title = 'Clerk');

Or, using ANSI join notation,
select e2.empl_last_name "Manager" , e1.empl_last_name "Clerk's name",
 e1.salary "Clerk's salary"
from empl e1 join empl e2
 on e1.mgr = e2.empl_num
where e1.job_title = 'Clerk'
 and e1.salary =
 (select max(salary)

 from empl
 where job_title = 'Clerk');

Both of these queries have the results:
Manager Clerk's name Clerk's salary
--------------- --------------- --------------
Raimi Miller 1300

Reading the above queries is a good test of your basic select statement understanding. Walking
through the first version (that isn't using the ANSI join notation):

1. the outer select's from clause is computing a Cartesian product of the empl table with itself, so
the result is all combinations of the empl table rows with empl table rows. But, table aliases are
being used, so the columns of the first empl table have the names e1.empl_last_name,
e1.empl_num, e1.salary, etc. And the columns of the second empl table have the names
e2.empl_last_name, e2.empl_num, e2.salary, etc.

2. the outer select's where clause is then selecting only those rows from 1's Cartesian product in
which:
e1.mgr = e2.empl_num

...can you see that now, the only rows left are those that combine an employee's information with the
information about that employee's manager? If e1.mgr = e2.empl_num, then all of the e2
columns are the data about the e1 columns' manager.

CS 325 - SQL Reading Packet 4: "Sub-selects, concatenating columns, and projecting literals" p. 10
Sharon Tuttle - last modified: 2021-09-09

AND e1.job_title = 'Clerk'

...and we'll only keep rows for employees who are clerks (along with their manager information)
AND e1.salary =

 (select max(salary)
 from empl

 where job_title = 'Clerk')

...and we'll only keep rows for clerks whose salary is the maximum salary for a clerk (along with
their manager information).

3. Finally, from those selected row or rows for clerks whose salary is the maximum salary for a clerk
(along with their manager information), we'll project:
e2.empl_last_name "Manager" , e1.empl_last_name "Clerk's name",
e1.salary "Clerk's salary"

or, as the column aliases imply, each such clerk's manager's last name (e2, remember, is the
manager's information), the clerk's last name, and the clerk's salary (since e1 is the employee's
information).

In SQL, you can often ask your question more than one way...
You might be noticing, by now, an interesting feature of SQL: there is often more than one query that
provides the same information. (Sometimes one of those queries might require more work for the
DBMS to provide the answer -- such performance considerations are beyond the scope of this course,
but note that a DBMS might provide tools that allow you to find out some idea of the relative costs of
two queries before actually performing them. This isn't a big deal in a small database, but it can be a
very big issue when dealing with very large databases.)

Consider our nested query from earlier projecting the names and salaries of employees who work in
Dallas:
select empl_last_name, salary
from empl
where dept_num in

 (select dept_num
 from dept
 where dept_loc = 'Dallas');

This query has the results:
EMPL_LAST_NAME SALARY
--------------- ----------
Scott 3000
Jones 2975
Ford 3000
Smith 800

This is a query that could also be written as a join, without using nesting:

CS 325 - SQL Reading Packet 4: "Sub-selects, concatenating columns, and projecting literals" p. 10
Sharon Tuttle - last modified: 2021-09-09

AND e1.job_title = 'Clerk'

...and we'll only keep rows for employees who are clerks (along with their manager information)
AND e1.salary =

 (select max(salary)
 from empl

 where job_title = 'Clerk')

...and we'll only keep rows for clerks whose salary is the maximum salary for a clerk (along with
their manager information).

3. Finally, from those selected row or rows for clerks whose salary is the maximum salary for a clerk
(along with their manager information), we'll project:
e2.empl_last_name "Manager" , e1.empl_last_name "Clerk's name",
e1.salary "Clerk's salary"

or, as the column aliases imply, each such clerk's manager's last name (e2, remember, is the
manager's information), the clerk's last name, and the clerk's salary (since e1 is the employee's
information).

In SQL, you can often ask your question more than one way...
You might be noticing, by now, an interesting feature of SQL: there is often more than one query that
provides the same information. (Sometimes one of those queries might require more work for the
DBMS to provide the answer -- such performance considerations are beyond the scope of this course,
but note that a DBMS might provide tools that allow you to find out some idea of the relative costs of
two queries before actually performing them. This isn't a big deal in a small database, but it can be a
very big issue when dealing with very large databases.)

Consider our nested query from earlier projecting the names and salaries of employees who work in
Dallas:
select empl_last_name, salary
from empl
where dept_num in

 (select dept_num
 from dept
 where dept_loc = 'Dallas');

This query has the results:
EMPL_LAST_NAME SALARY
--------------- ----------
Scott 3000
Jones 2975
Ford 3000
Smith 800

This is a query that could also be written as a join, without using nesting:

CS 325 - SQL Reading Packet 4: "Sub-selects, concatenating columns, and projecting literals" p. 11
Sharon Tuttle - last modified: 2021-09-09

select empl_last_name, salary
from empl e, dept d
where e.dept_num = d.dept_num
 and dept_loc = 'Dallas';

And, of course, it can be written using ANSI join notation as well:
select empl_last_name, salary
from empl e join dept d
 on e.dept_num = d.dept_num
where dept_loc = 'Dallas';

This is a just a fact of life in SQL -- there is usually more than one way to write a particular query!

There are some rules of thumb that can guide you -- for example, I've found that, if you are selecting
rows based on some computation, nesting is usually required. And, if you are projecting columns from
more than one table, you'll generally have to have a join in the "outermost" level of that query, because
a select clause can only project columns (or computations based on columns) that appear in its
from clause.

But this is not to imply that nesting and joining are either-or options within a query -- a single query
can involve both nesting and joins (as we saw in the query projecting the manager's name, the clerk's
name, and the clerk's salary for the highest-paid clerk(s)).

Here's another example that happens to involve both a join and nesting: what if you would like the
name of the employee, and the department name, for clerks making more than the minimum sales
employee salary?
select empl_last_name, dept_name
from empl e, dept d
where e.dept_num = d.dept_num
 and job_title = 'Clerk'
 and salary >

 (select min(salary)
 from empl
 where job_title = 'Sales');

Or, using ANSI join notation:
select empl_last_name, dept_name
from empl e join dept d
 on e.dept_num = d.dept_num
where job_title = 'Clerk'
 and salary >

 (select min(salary)
 from empl
 where job_title = 'Sales');

You have to include both empl and dept in the outermost select's from clause if you want to
project empl_last_name (which is in the empl table) and dept_name (which is in the dept

CS 325 - SQL Reading Packet 4: "Sub-selects, concatenating columns, and projecting literals" p. 11
Sharon Tuttle - last modified: 2021-09-09

select empl_last_name, salary
from empl e, dept d
where e.dept_num = d.dept_num
 and dept_loc = 'Dallas';

And, of course, it can be written using ANSI join notation as well:
select empl_last_name, salary
from empl e join dept d
 on e.dept_num = d.dept_num
where dept_loc = 'Dallas';

This is a just a fact of life in SQL -- there is usually more than one way to write a particular query!

There are some rules of thumb that can guide you -- for example, I've found that, if you are selecting
rows based on some computation, nesting is usually required. And, if you are projecting columns from
more than one table, you'll generally have to have a join in the "outermost" level of that query, because
a select clause can only project columns (or computations based on columns) that appear in its
from clause.

But this is not to imply that nesting and joining are either-or options within a query -- a single query
can involve both nesting and joins (as we saw in the query projecting the manager's name, the clerk's
name, and the clerk's salary for the highest-paid clerk(s)).

Here's another example that happens to involve both a join and nesting: what if you would like the
name of the employee, and the department name, for clerks making more than the minimum sales
employee salary?
select empl_last_name, dept_name
from empl e, dept d
where e.dept_num = d.dept_num
 and job_title = 'Clerk'
 and salary >

 (select min(salary)
 from empl
 where job_title = 'Sales');

Or, using ANSI join notation:
select empl_last_name, dept_name
from empl e join dept d
 on e.dept_num = d.dept_num
where job_title = 'Clerk'
 and salary >

 (select min(salary)
 from empl
 where job_title = 'Sales');

You have to include both empl and dept in the outermost select's from clause if you want to
project empl_last_name (which is in the empl table) and dept_name (which is in the dept

CS 325 - SQL Reading Packet 4: "Sub-selects, concatenating columns, and projecting literals" p. 12
Sharon Tuttle - last modified: 2021-09-09

table). So, you need a join there. And you need the nested select to be able to select rows from that
join in which the salary is greater than the minimum salary for a sales employee.

Both of these queries have the results:
EMPL_LAST_NAME DEPT_NAME
--------------- ---------------
Miller Accounting

Be careful, though, to remember the meaning of the select statements that you are writing --
sometimes there can be subtle differences between two similar queries. For example, consider a query
that projects which departments and locations have employees hired before December 1, 2017. These
two queries will return those departments and locations, but with one difference:
select dept_name, dept_loc
from dept
where dept_num in
 (select dept_num
 from empl
 where hiredate < '01-DEC-2017');

select dept_name, dept_loc
from dept d, empl e
where d.dept_num = e.dept_num
and hiredate < '01-DEC-2017';

Can you tell the difference? The first version is projecting those rows from dept that meet the
criterion -- since each department has one row in the dept table, it can thus project each department at
most once.

However, consider the second version -- it is computing the join of the dept and empl tables, and
since these are linked via dept_num, you have a row for each employee combined with the details of
that employee's department. What if two employees from the same department were hired before
December 1, 2017? Then you'll project the dept_name and the dept_loc for each of those
employees -- you might see some department names and locations more than once.

So, the first version has the results:
DEPT_NAME DEPT_LOC
--------------- ---------------
Management New York
Research Dallas
Sales Chicago
Accounting New York

...and the second version has the results:
DEPT_NAME DEPT_LOC
--------------- ---------------
Management New York
Research Dallas

CS 325 - SQL Reading Packet 4: "Sub-selects, concatenating columns, and projecting literals" p. 12
Sharon Tuttle - last modified: 2021-09-09

table). So, you need a join there. And you need the nested select to be able to select rows from that
join in which the salary is greater than the minimum salary for a sales employee.

Both of these queries have the results:
EMPL_LAST_NAME DEPT_NAME
--------------- ---------------
Miller Accounting

Be careful, though, to remember the meaning of the select statements that you are writing --
sometimes there can be subtle differences between two similar queries. For example, consider a query
that projects which departments and locations have employees hired before December 1, 2017. These
two queries will return those departments and locations, but with one difference:
select dept_name, dept_loc
from dept
where dept_num in
 (select dept_num
 from empl
 where hiredate < '01-DEC-2017');

select dept_name, dept_loc
from dept d, empl e
where d.dept_num = e.dept_num
and hiredate < '01-DEC-2017';

Can you tell the difference? The first version is projecting those rows from dept that meet the
criterion -- since each department has one row in the dept table, it can thus project each department at
most once.

However, consider the second version -- it is computing the join of the dept and empl tables, and
since these are linked via dept_num, you have a row for each employee combined with the details of
that employee's department. What if two employees from the same department were hired before
December 1, 2017? Then you'll project the dept_name and the dept_loc for each of those
employees -- you might see some department names and locations more than once.

So, the first version has the results:
DEPT_NAME DEPT_LOC
--------------- ---------------
Management New York
Research Dallas
Sales Chicago
Accounting New York

...and the second version has the results:
DEPT_NAME DEPT_LOC
--------------- ---------------
Management New York
Research Dallas

CS 325 - SQL Reading Packet 4: "Sub-selects, concatenating columns, and projecting literals" p. 13
Sharon Tuttle - last modified: 2021-09-09

Sales Chicago
Accounting New York
Research Dallas
Research Dallas
Accounting New York

This is not a fatal flaw -- you can use distinct to get a true relational projection from the second
version, after all -- but depending on what you want to do with the results, you might prefer one of
these results to the other, and in some cases computing one might take more effort than computing the
other (and, again, while we aren't getting into that in this course, there do exist tools for estimating the
effort a query will take before running it, which could be important for extremely large databases).

Bizarre aside: more projecting options: projecting literals, and
concatenation
We have one more operation related to nested selects to discuss. But that discussion will be smoothed a
bit if we precede it with a slight aside.

First of all, it is an odd-but-true fact that one can project a literal value -- something like a number 3, or
a string 'Howdy' -- if one wishes. And since you project the expressions in the select clause for
each row selected in the where clause, you'd simply see that literal once for each row selected.

Consider, for example:
select 'hi'
from dept;

This results in the following:
'H
--
hi
hi
hi
hi
hi

...projecting a 'hi' for each row in dept! (and the heading is what is being projected, chopped off
because it is longer than the contents of the column...! We will have ways to prevent this chopping
later, but in the interests of less-complexity-at-once we're putting up with this chopping for now.)

Now, I'll grant you that this looks like a fairly useless feature. We'll have a nested-select-related reason
to do it in a moment, however. And even before that, if you combine this with another SQL operator,
concatenation, you can get some quite useful results.

The concatenation operator, || (that's 2 vertical bars typed with no space in between), simply
combines the expressions on either side into a single value. If this concatenation is in a select
clause, then you project that combined value.

For example, the query:

CS 325 - SQL Reading Packet 4: "Sub-selects, concatenating columns, and projecting literals" p. 13
Sharon Tuttle - last modified: 2021-09-09

Sales Chicago
Accounting New York
Research Dallas
Research Dallas
Accounting New York

This is not a fatal flaw -- you can use distinct to get a true relational projection from the second
version, after all -- but depending on what you want to do with the results, you might prefer one of
these results to the other, and in some cases computing one might take more effort than computing the
other (and, again, while we aren't getting into that in this course, there do exist tools for estimating the
effort a query will take before running it, which could be important for extremely large databases).

Bizarre aside: more projecting options: projecting literals, and
concatenation
We have one more operation related to nested selects to discuss. But that discussion will be smoothed a
bit if we precede it with a slight aside.

First of all, it is an odd-but-true fact that one can project a literal value -- something like a number 3, or
a string 'Howdy' -- if one wishes. And since you project the expressions in the select clause for
each row selected in the where clause, you'd simply see that literal once for each row selected.

Consider, for example:
select 'hi'
from dept;

This results in the following:
'H
--
hi
hi
hi
hi
hi

...projecting a 'hi' for each row in dept! (and the heading is what is being projected, chopped off
because it is longer than the contents of the column...! We will have ways to prevent this chopping
later, but in the interests of less-complexity-at-once we're putting up with this chopping for now.)

Now, I'll grant you that this looks like a fairly useless feature. We'll have a nested-select-related reason
to do it in a moment, however. And even before that, if you combine this with another SQL operator,
concatenation, you can get some quite useful results.

The concatenation operator, || (that's 2 vertical bars typed with no space in between), simply
combines the expressions on either side into a single value. If this concatenation is in a select
clause, then you project that combined value.

For example, the query:

CS 325 - SQL Reading Packet 4: "Sub-selects, concatenating columns, and projecting literals" p. 14
Sharon Tuttle - last modified: 2021-09-09

select dept_num || dept_name
from dept;

results in:
DEPT_NUM||DEPT_NAM

100Accounting
200Research
300Sales
400Operations
500Management

OK, that is a rather ugly resulting column. Ah, but what if you concatenated some spaces and a dash in
between the dept_num and the dept_name, and then used a column alias?
select dept_num || ' - ' || dept_name "Department"
from dept;

...that is, concatenating a dept_num and a ' - ' and a dept_name into one column, giving the
resulting column the alias "Department"? Then you get a much more attractive result:
Department

100 - Accounting
200 - Research
300 - Sales
400 - Operations
500 - Management

Being able to project such combinations is an important reason why you should not fear having more-
detailed columns (for example, first_name, last_name) in your tables instead of less-detailed
ones (name) -- you can always project combinations of those columns as desired. Indeed, it is much
easier to concatenate columns as desired than it is to "break up" more "composite" columns.

Imagine the possibilities here:

• If, today, you want to project a last name, then a comma, then a first name?

last_name || ', ' || first_name

• If, tomorrow, you want to project first names, then a blank, then last names?

first_name || ' ' || last_name

• If you want to project city, then a comma and blank, then state, then two blanks, then a zip code?

city || ', ' || state || ' ' || zip

• ...but later you want to project the state, with the zip code in parentheses?

state || '(' || zip || ')'

• Think of all the ways you might want to format area codes and telephone numbers over time -- if

CS 325 - SQL Reading Packet 4: "Sub-selects, concatenating columns, and projecting literals" p. 14
Sharon Tuttle - last modified: 2021-09-09

select dept_num || dept_name
from dept;

results in:
DEPT_NUM||DEPT_NAM

100Accounting
200Research
300Sales
400Operations
500Management

OK, that is a rather ugly resulting column. Ah, but what if you concatenated some spaces and a dash in
between the dept_num and the dept_name, and then used a column alias?
select dept_num || ' - ' || dept_name "Department"
from dept;

...that is, concatenating a dept_num and a ' - ' and a dept_name into one column, giving the
resulting column the alias "Department"? Then you get a much more attractive result:
Department

100 - Accounting
200 - Research
300 - Sales
400 - Operations
500 - Management

Being able to project such combinations is an important reason why you should not fear having more-
detailed columns (for example, first_name, last_name) in your tables instead of less-detailed
ones (name) -- you can always project combinations of those columns as desired. Indeed, it is much
easier to concatenate columns as desired than it is to "break up" more "composite" columns.

Imagine the possibilities here:

• If, today, you want to project a last name, then a comma, then a first name?

last_name || ', ' || first_name

• If, tomorrow, you want to project first names, then a blank, then last names?

first_name || ' ' || last_name

• If you want to project city, then a comma and blank, then state, then two blanks, then a zip code?

city || ', ' || state || ' ' || zip

• ...but later you want to project the state, with the zip code in parentheses?

state || '(' || zip || ')'

• Think of all the ways you might want to format area codes and telephone numbers over time -- if

CS 325 - SQL Reading Packet 4: "Sub-selects, concatenating columns, and projecting literals" p. 15
Sharon Tuttle - last modified: 2021-09-09

area_code is one column and telephone_num is another, you can now choose to put
parentheses around the area code or not, put a dash after the area code or not, omit the area code --
just by changing what you choose to concatenate together in a projection:

'(' || area_code || ') ' || phone_num

area_code || '-' || phone_num

phone_num

You can even use concatenation in this way to create a comma-separated version of your database data
suitable for reading into a spreadsheet (for convenient use with its charting and graphing tools, for
example), or for importing into other programs.

the exists predicate
A predicate is an operator that results in a value of true or false -- in is a predicate operator, and so are
<, >, <=, >=, !=, <>, and =.

Now we are discussing another predicate operator: exists.

To help to explain this operator, we could use a department that happens to have no employees yet. So,
we'll add a new department to the dept table:
insert into dept
values
('600', 'Computer', 'Arcata');

exists is odd in that it doesn't exactly have a left-hand-side, but its right-hand-side is a subselect that
has a rather interesting relationship to the outer select. As Sunderraman puts it, for each row in the
outer select, "the exists predicate is true if [its] sub-select results in a non-empty set of values, and
it is false otherwise."

So, for each row in the outer select, that row will satisfy the exists predicate, and be selected, if the
exists' sub-query is non-empty for that row. But if that sub-query is empty for that row, then the
exists predicate will be false for that row, and that row will not be selected.

Now, why wouldn't this be all-or-nothing -- why wouldn't either every row resulting from a from
clause be selected, or none of them be selected? Because exists is almost always used with a so-
called correlation condition, with a correlated subquery: when the subselect uses data from the outer
select. That is, you may have noticed that our subqueries so far have always been able to be run
independently -- if you carefully pasted them in without the parentheses around them, they would run
on their own. A correlated subquery is different: it refers to at least one attribute from table(s) not in
the from clause of subselect, but that are in the from clause of the outer select it is nested within! If
you tried to run such a correlated subquery by itself, then, it would fail (since it references attributes not
part of that subselect's from clause).

In this correlated subquery, combined with exists, then, each row in the from clause from the outer-
select has the subquery tried based on its attribute values as referenced in that subselect; if there are
any rows in the result, exists is true, and that row is selected. Otherwise, exists is false for that
row, and it is not selected.

CS 325 - SQL Reading Packet 4: "Sub-selects, concatenating columns, and projecting literals" p. 15
Sharon Tuttle - last modified: 2021-09-09

area_code is one column and telephone_num is another, you can now choose to put
parentheses around the area code or not, put a dash after the area code or not, omit the area code --
just by changing what you choose to concatenate together in a projection:

'(' || area_code || ') ' || phone_num

area_code || '-' || phone_num

phone_num

You can even use concatenation in this way to create a comma-separated version of your database data
suitable for reading into a spreadsheet (for convenient use with its charting and graphing tools, for
example), or for importing into other programs.

the exists predicate
A predicate is an operator that results in a value of true or false -- in is a predicate operator, and so are
<, >, <=, >=, !=, <>, and =.

Now we are discussing another predicate operator: exists.

To help to explain this operator, we could use a department that happens to have no employees yet. So,
we'll add a new department to the dept table:
insert into dept
values
('600', 'Computer', 'Arcata');

exists is odd in that it doesn't exactly have a left-hand-side, but its right-hand-side is a subselect that
has a rather interesting relationship to the outer select. As Sunderraman puts it, for each row in the
outer select, "the exists predicate is true if [its] sub-select results in a non-empty set of values, and
it is false otherwise."

So, for each row in the outer select, that row will satisfy the exists predicate, and be selected, if the
exists' sub-query is non-empty for that row. But if that sub-query is empty for that row, then the
exists predicate will be false for that row, and that row will not be selected.

Now, why wouldn't this be all-or-nothing -- why wouldn't either every row resulting from a from
clause be selected, or none of them be selected? Because exists is almost always used with a so-
called correlation condition, with a correlated subquery: when the subselect uses data from the outer
select. That is, you may have noticed that our subqueries so far have always been able to be run
independently -- if you carefully pasted them in without the parentheses around them, they would run
on their own. A correlated subquery is different: it refers to at least one attribute from table(s) not in
the from clause of subselect, but that are in the from clause of the outer select it is nested within! If
you tried to run such a correlated subquery by itself, then, it would fail (since it references attributes not
part of that subselect's from clause).

In this correlated subquery, combined with exists, then, each row in the from clause from the outer-
select has the subquery tried based on its attribute values as referenced in that subselect; if there are
any rows in the result, exists is true, and that row is selected. Otherwise, exists is false for that
row, and it is not selected.

CS 325 - SQL Reading Packet 4: "Sub-selects, concatenating columns, and projecting literals" p. 16
Sharon Tuttle - last modified: 2021-09-09

And all that probably sounds very bizarre, and, really, nothing but some practice (OK, maybe lots of
practice) will make it clearer. This example uses exists with a correlated subquery to list only the
locations and names of departments with employees:
select dept_loc, dept_name
from dept
where exists
 (select 'a'
 from empl
 where empl.dept_num = dept.dept_num);

Remembering that we just added a row to dept for a Computer department in Arcata, which
currently has no employees, note that this query's results properly does not include the new department:

DEPT_LOC DEPT_NAME
--------------- ---------------
New York Management
Dallas Research
Chicago Sales
New York Accounting
Boston Operations

See how the subselect has a where clause using the attribute dept.dept_num, even though its
from clause only contains empl? This would be illegal, except that the outer query does have dept
in its from clause, and so that makes this subselect a correlated query, and we call empl.dept_num
= dept.dept_num a correlation condition, in this case.

The effect here is that, for each row in dept, the DBMS will see if there is a row in empl for which
empl.dept_num is the same as that row's dept_num. If there is, then there is an employee with
that department's dept_num -- that means that rows for this subquery exist for this department row,
and that department's row will be selected. However, if a department has no employees, then there will
be no empl rows in which empl.dept_num is the same as that department row's dept_num, and
so since the subselect results in no rows for this subquery for that dept_num, the exists would be
false and this row would not be selected.

That is, we are selecting only those rows of dept for which there exists at least one empl row with
that row's dept_num.

Try it -- you'll see that the new Computer department indeed does not show up in the results of this
query.

Why in the world are we projecting a literal in this subselect? That's considered good style, because, in
this case, it is more efficient -- notice that exists is true or false based simply on whether the
subselect has any rows in its result or not. exists does not care what those values are, just that rows
with something in them result -- so why bother projecting something fancy? Projecting a small literal
is about the "cheapest" projection that there is.

So, it is important to remember the following when writing queries using exists:

• Make sure the subselect used with exists is a correlated subquery, with a correlation condition --

CS 325 - SQL Reading Packet 4: "Sub-selects, concatenating columns, and projecting literals" p. 16
Sharon Tuttle - last modified: 2021-09-09

And all that probably sounds very bizarre, and, really, nothing but some practice (OK, maybe lots of
practice) will make it clearer. This example uses exists with a correlated subquery to list only the
locations and names of departments with employees:
select dept_loc, dept_name
from dept
where exists
 (select 'a'
 from empl
 where empl.dept_num = dept.dept_num);

Remembering that we just added a row to dept for a Computer department in Arcata, which
currently has no employees, note that this query's results properly does not include the new department:

DEPT_LOC DEPT_NAME
--------------- ---------------
New York Management
Dallas Research
Chicago Sales
New York Accounting
Boston Operations

See how the subselect has a where clause using the attribute dept.dept_num, even though its
from clause only contains empl? This would be illegal, except that the outer query does have dept
in its from clause, and so that makes this subselect a correlated query, and we call empl.dept_num
= dept.dept_num a correlation condition, in this case.

The effect here is that, for each row in dept, the DBMS will see if there is a row in empl for which
empl.dept_num is the same as that row's dept_num. If there is, then there is an employee with
that department's dept_num -- that means that rows for this subquery exist for this department row,
and that department's row will be selected. However, if a department has no employees, then there will
be no empl rows in which empl.dept_num is the same as that department row's dept_num, and
so since the subselect results in no rows for this subquery for that dept_num, the exists would be
false and this row would not be selected.

That is, we are selecting only those rows of dept for which there exists at least one empl row with
that row's dept_num.

Try it -- you'll see that the new Computer department indeed does not show up in the results of this
query.

Why in the world are we projecting a literal in this subselect? That's considered good style, because, in
this case, it is more efficient -- notice that exists is true or false based simply on whether the
subselect has any rows in its result or not. exists does not care what those values are, just that rows
with something in them result -- so why bother projecting something fancy? Projecting a small literal
is about the "cheapest" projection that there is.

So, it is important to remember the following when writing queries using exists:

• Make sure the subselect used with exists is a correlated subquery, with a correlation condition --

CS 325 - SQL Reading Packet 4: "Sub-selects, concatenating columns, and projecting literals" p. 17
Sharon Tuttle - last modified: 2021-09-09

make sure it includes a condition in its where clause that refers to an attribute not in the subquery's
from clause, but in the outer query's from clause.

– It will be considered poor style (and against course style standards) to use exists without such
a correlation condition.

• Likewise, our course style standard will be to project a literal in a correlated subquery used with
exists.

• Finally, because of the way that exists works, sometimes using it with a Cartesian product (where
you really ought to have a join -- that is, where you should include a join condition) nevertheless
gives a correct answer, if you use distinct to filter out the many excess copies of the desired
rows.

This, however, will be considered poor style in this class, and will not be accepted for credit. It is just
too easy for this kind of approach to lead to incorrect and hard-to-read and hard-to-understand queries.

Our course style (and correctness) rule-of-thumb: whenever you have N tables in a select's from
clause, you are expected to have at least (N-1) appropriate corresponding join conditions in either its
where clause (or within on clauses for ANSI join notation).

not exists

not exists does the opposite of exists -- it selects those rows from the outer select for which the
subselect is empty (those rows from the outer select for which rows do not exist in the subquery).

Let's use not exists to list which departments currently have no employees:
select dept_loc, dept_name
from dept
where NOT exists
 (select 'a'
 from empl
 where empl.dept_num = dept.dept_num);

Now you would see the new Computer department show up in the results of this query:

DEPT_LOC DEPT_NAME
--------------- ---------------
Arcata Computer

I find it useful to think of the subquery being executed for each row of the outer query.

Aside - "cleaning up" from experiments/playing around
Note -- I am going to delete this new Computer department "now", before giving the results for
examples in the next SQL reading packet, to hopefully avoid confusion. At this point, I could
accomplish this in at least three different ways:

1. I could simply delete the Computer department's row -- here is one of the possible delete

CS 325 - SQL Reading Packet 4: "Sub-selects, concatenating columns, and projecting literals" p. 17
Sharon Tuttle - last modified: 2021-09-09

make sure it includes a condition in its where clause that refers to an attribute not in the subquery's
from clause, but in the outer query's from clause.

– It will be considered poor style (and against course style standards) to use exists without such
a correlation condition.

• Likewise, our course style standard will be to project a literal in a correlated subquery used with
exists.

• Finally, because of the way that exists works, sometimes using it with a Cartesian product (where
you really ought to have a join -- that is, where you should include a join condition) nevertheless
gives a correct answer, if you use distinct to filter out the many excess copies of the desired
rows.

This, however, will be considered poor style in this class, and will not be accepted for credit. It is just
too easy for this kind of approach to lead to incorrect and hard-to-read and hard-to-understand queries.

Our course style (and correctness) rule-of-thumb: whenever you have N tables in a select's from
clause, you are expected to have at least (N-1) appropriate corresponding join conditions in either its
where clause (or within on clauses for ANSI join notation).

not exists

not exists does the opposite of exists -- it selects those rows from the outer select for which the
subselect is empty (those rows from the outer select for which rows do not exist in the subquery).

Let's use not exists to list which departments currently have no employees:
select dept_loc, dept_name
from dept
where NOT exists
 (select 'a'
 from empl
 where empl.dept_num = dept.dept_num);

Now you would see the new Computer department show up in the results of this query:

DEPT_LOC DEPT_NAME
--------------- ---------------
Arcata Computer

I find it useful to think of the subquery being executed for each row of the outer query.

Aside - "cleaning up" from experiments/playing around
Note -- I am going to delete this new Computer department "now", before giving the results for
examples in the next SQL reading packet, to hopefully avoid confusion. At this point, I could
accomplish this in at least three different ways:

1. I could simply delete the Computer department's row -- here is one of the possible delete

CS 325 - SQL Reading Packet 4: "Sub-selects, concatenating columns, and projecting literals" p. 18
Sharon Tuttle - last modified: 2021-09-09

statements for this:
delete from dept
where dept_num = '600';

2. I could re-run the SQL script set-up-ex-tbls.sql, since this drops and recreates the dept
table -- here is one of the possible ways of doing this:
@ set-up-ex-tbls

3. If I am in the same SQL session (if I have not yet logged out since creating the Computer
department), I can undo -- or roll back -- all changes since the database was last committed using a
SQL rollback command:
rollback;

We'll be discussing this command more in a later packet, including discussing what is meant by
committing changes to a database.

CS 325 - SQL Reading Packet 4: "Sub-selects, concatenating columns, and projecting literals" p. 18
Sharon Tuttle - last modified: 2021-09-09

statements for this:
delete from dept
where dept_num = '600';

2. I could re-run the SQL script set-up-ex-tbls.sql, since this drops and recreates the dept
table -- here is one of the possible ways of doing this:
@ set-up-ex-tbls

3. If I am in the same SQL session (if I have not yet logged out since creating the Computer
department), I can undo -- or roll back -- all changes since the database was last committed using a
SQL rollback command:
rollback;

We'll be discussing this command more in a later packet, including discussing what is meant by
committing changes to a database.

	SOURCES:
	Aside: two useful SQL*Plus commands for debugging
	Nested selects/subselects
	Some common errors related to nested selects/subselects
	Nesting a select within a from clause
	More nested select examples
	In SQL, you can often ask your question more than one way...
	Bizarre aside: more projecting options: projecting literals, and concatenation
	the exists predicate
	not exists

	Aside - "cleaning up" from experiments/playing around

