
CS 325 - SQL Reading Packet 5: "order by, group by, and having" p. 1
Sharon Tuttle - last modified: 2021-09-10

CS 325 - SQL Reading Packet 5: "order by, group by,
and having"

SOURCES:
* Oracle9i Programming: A Primer, Rajshekhar Sunderraman, Addison Wesley.

* Classic Oracle example tables empl and dept, adapted somewhat over the years

more select clauses: order by, group by, and having
The select statement can have some additional optional clauses, in addition to the clauses discussed
thus far. In this lab, we'll be discussing three such clauses: order by, group by, and having.

order by
As you have written your queries, have you ever wished that the rows in the result would appear in a
different order? That's all that order by does -- it has absolutely no effect on what is stored in the
database (since, indeed, a select never effects what is stored in a database), but it does allow the user
to specify the order in which they would like the resulting rows to be displayed.

This should always be the final clause of a select (and indeed, syntactically, it only belongs on an
outer-select - since it is really just specifying a final row-display order, it wouldn't make sense
inside of a subselect, if you think about it.) And, in its simplest form, you just follow the order by
by the column (or the projected expression) that you want the rows to be ordered by.

(If you have ever used SORT BY to change the order of rows in an Excel database, it is a similar idea
-- you specify the column you want to sort the Excel table's rows by, and then the rows are sorted in
order of that column's values.)

For example, say that you want to select all of the rows of the empl table, but displaying those selected
rows in order of increasing salary. Then, you'd order by salary:

select *
from empl
order by salary;

...resulting in:
EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
7369 Smith Clerk 7902 17-DEC-12 800 200
7900 James Clerk 7698 03-DEC-17 950 300
7876 Adams Clerk 7788 23-SEP-18 1100 400
7654 Martin Sales 7698 28-SEP-18 1250 1400 300

CS 325 - SQL Reading Packet 5: "order by, group by, and having" p. 1
Sharon Tuttle - last modified: 2021-09-10

CS 325 - SQL Reading Packet 5: "order by, group by,
and having"

SOURCES:
* Oracle9i Programming: A Primer, Rajshekhar Sunderraman, Addison Wesley.

* Classic Oracle example tables empl and dept, adapted somewhat over the years

more select clauses: order by, group by, and having
The select statement can have some additional optional clauses, in addition to the clauses discussed
thus far. In this lab, we'll be discussing three such clauses: order by, group by, and having.

order by
As you have written your queries, have you ever wished that the rows in the result would appear in a
different order? That's all that order by does -- it has absolutely no effect on what is stored in the
database (since, indeed, a select never effects what is stored in a database), but it does allow the user
to specify the order in which they would like the resulting rows to be displayed.

This should always be the final clause of a select (and indeed, syntactically, it only belongs on an
outer-select - since it is really just specifying a final row-display order, it wouldn't make sense
inside of a subselect, if you think about it.) And, in its simplest form, you just follow the order by
by the column (or the projected expression) that you want the rows to be ordered by.

(If you have ever used SORT BY to change the order of rows in an Excel database, it is a similar idea
-- you specify the column you want to sort the Excel table's rows by, and then the rows are sorted in
order of that column's values.)

For example, say that you want to select all of the rows of the empl table, but displaying those selected
rows in order of increasing salary. Then, you'd order by salary:

select *
from empl
order by salary;

...resulting in:
EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
7369 Smith Clerk 7902 17-DEC-12 800 200
7900 James Clerk 7698 03-DEC-17 950 300
7876 Adams Clerk 7788 23-SEP-18 1100 400
7654 Martin Sales 7698 28-SEP-18 1250 1400 300

CS 325 - SQL Reading Packet 5: "order by, group by, and having" p. 2
Sharon Tuttle - last modified: 2021-09-10

7521 Ward Sales 7698 22-FEB-19 1250 500 300
7934 Miller Clerk 7782 23-JAN-16 1300 100
7844 Turner Sales 7698 08-SEP-19 1500 0 300
7499 Michaels Sales 7698 20-FEB-18 1600 300 300
7782 Raimi Manager 7839 09-JUN-12 2450 100
7698 Blake Manager 7839 01-MAY-13 2850 300
7566 Jones Manager 7839 02-APR-12 2975 200

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
7788 Scott Analyst 7566 09-NOV-18 3000 200
7902 Ford Analyst 7566 03-DEC-12 3000 200
7839 King President 17-NOV-11 5000 500

14 rows selected.

If you'd like to see the selected rows in order of increasing hiredate,

select *
from empl
order by hiredate;

...and the displayed results for this query will be:

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
7839 King President 17-NOV-11 5000 500
7566 Jones Manager 7839 02-APR-12 2975 200
7782 Raimi Manager 7839 09-JUN-12 2450 100
7902 Ford Analyst 7566 03-DEC-12 3000 200
7369 Smith Clerk 7902 17-DEC-12 800 200
7698 Blake Manager 7839 01-MAY-13 2850 300
7934 Miller Clerk 7782 23-JAN-16 1300 100
7900 James Clerk 7698 03-DEC-17 950 300
7499 Michaels Sales 7698 20-FEB-18 1600 300 300
7876 Adams Clerk 7788 23-SEP-18 1100 400
7654 Martin Sales 7698 28-SEP-18 1250 1400 300

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
7788 Scott Analyst 7566 09-NOV-18 3000 200
7521 Ward Sales 7698 22-FEB-19 1250 500 300
7844 Turner Sales 7698 08-SEP-19 1500 0 300

14 rows selected.

Or, if you'd like to see the empl rows in order of job_title:

select *
from empl

CS 325 - SQL Reading Packet 5: "order by, group by, and having" p. 2
Sharon Tuttle - last modified: 2021-09-10

7521 Ward Sales 7698 22-FEB-19 1250 500 300
7934 Miller Clerk 7782 23-JAN-16 1300 100
7844 Turner Sales 7698 08-SEP-19 1500 0 300
7499 Michaels Sales 7698 20-FEB-18 1600 300 300
7782 Raimi Manager 7839 09-JUN-12 2450 100
7698 Blake Manager 7839 01-MAY-13 2850 300
7566 Jones Manager 7839 02-APR-12 2975 200

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
7788 Scott Analyst 7566 09-NOV-18 3000 200
7902 Ford Analyst 7566 03-DEC-12 3000 200
7839 King President 17-NOV-11 5000 500

14 rows selected.

If you'd like to see the selected rows in order of increasing hiredate,

select *
from empl
order by hiredate;

...and the displayed results for this query will be:

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
7839 King President 17-NOV-11 5000 500
7566 Jones Manager 7839 02-APR-12 2975 200
7782 Raimi Manager 7839 09-JUN-12 2450 100
7902 Ford Analyst 7566 03-DEC-12 3000 200
7369 Smith Clerk 7902 17-DEC-12 800 200
7698 Blake Manager 7839 01-MAY-13 2850 300
7934 Miller Clerk 7782 23-JAN-16 1300 100
7900 James Clerk 7698 03-DEC-17 950 300
7499 Michaels Sales 7698 20-FEB-18 1600 300 300
7876 Adams Clerk 7788 23-SEP-18 1100 400
7654 Martin Sales 7698 28-SEP-18 1250 1400 300

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
7788 Scott Analyst 7566 09-NOV-18 3000 200
7521 Ward Sales 7698 22-FEB-19 1250 500 300
7844 Turner Sales 7698 08-SEP-19 1500 0 300

14 rows selected.

Or, if you'd like to see the empl rows in order of job_title:

select *
from empl

CS 325 - SQL Reading Packet 5: "order by, group by, and having" p. 3
Sharon Tuttle - last modified: 2021-09-10

order by job_title;

...and this query has the results:

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
7902 Ford Analyst 7566 03-DEC-12 3000 200
7788 Scott Analyst 7566 09-NOV-18 3000 200
7369 Smith Clerk 7902 17-DEC-12 800 200
7934 Miller Clerk 7782 23-JAN-16 1300 100
7876 Adams Clerk 7788 23-SEP-18 1100 400
7900 James Clerk 7698 03-DEC-17 950 300
7698 Blake Manager 7839 01-MAY-13 2850 300
7782 Raimi Manager 7839 09-JUN-12 2450 100
7566 Jones Manager 7839 02-APR-12 2975 200
7839 King President 17-NOV-11 5000 500
7844 Turner Sales 7698 08-SEP-19 1500 0 300

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
7654 Martin Sales 7698 28-SEP-18 1250 1400 300
7521 Ward Sales 7698 22-FEB-19 1250 500 300
7499 Michaels Sales 7698 20-FEB-18 1600 300 300

14 rows selected.

So, using order by, you can see the columns projected from the rows selected in any order that you
would like.

Note that what you choose to order by does not affect which columns are projected, or the order in
which the projected columns appear -- that is determined completely by the select clause.

For example, I don't even have to project the column I'm ordering by:

select empl_last_name
from empl
order by salary;

Here, then, I would get:

EMPL_LAST_NAME

Smith
James
Adams
Martin
Ward
Miller

CS 325 - SQL Reading Packet 5: "order by, group by, and having" p. 3
Sharon Tuttle - last modified: 2021-09-10

order by job_title;

...and this query has the results:

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
7902 Ford Analyst 7566 03-DEC-12 3000 200
7788 Scott Analyst 7566 09-NOV-18 3000 200
7369 Smith Clerk 7902 17-DEC-12 800 200
7934 Miller Clerk 7782 23-JAN-16 1300 100
7876 Adams Clerk 7788 23-SEP-18 1100 400
7900 James Clerk 7698 03-DEC-17 950 300
7698 Blake Manager 7839 01-MAY-13 2850 300
7782 Raimi Manager 7839 09-JUN-12 2450 100
7566 Jones Manager 7839 02-APR-12 2975 200
7839 King President 17-NOV-11 5000 500
7844 Turner Sales 7698 08-SEP-19 1500 0 300

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
7654 Martin Sales 7698 28-SEP-18 1250 1400 300
7521 Ward Sales 7698 22-FEB-19 1250 500 300
7499 Michaels Sales 7698 20-FEB-18 1600 300 300

14 rows selected.

So, using order by, you can see the columns projected from the rows selected in any order that you
would like.

Note that what you choose to order by does not affect which columns are projected, or the order in
which the projected columns appear -- that is determined completely by the select clause.

For example, I don't even have to project the column I'm ordering by:

select empl_last_name
from empl
order by salary;

Here, then, I would get:

EMPL_LAST_NAME

Smith
James
Adams
Martin
Ward
Miller

CS 325 - SQL Reading Packet 5: "order by, group by, and having" p. 4
Sharon Tuttle - last modified: 2021-09-10

Turner
Michaels
Raimi
Blake
Jones

EMPL_LAST_NAME

Scott
Ford
King

14 rows selected.

And, just to make sure this is clear: order by just affects the order that the rows selected by the rest
of the select are displayed; if you only select a few rows, then only those rows are in the ordered
result:

select salary, empl_last_name
from empl
where job_title = 'Manager'
order by empl_last_name;

This query has the results:

 SALARY EMPL_LAST_NAME
---------- ---------------
 2850 Blake
 2975 Jones
 2450 Raimi

Multiple attributes in an order by clause
What happens if you give multiple attributes (or expressions) in the order by clause, separated by
commas? Then you are specifying additional ordering information -- you are saying what to sort by in
case of TIES in the previous expression(s) given in the order by.

Say that I want to select all the rows of empl, displaying the rows in order of job_title, and if they
have the same job_title, display the rows within that job_title by mgr, and if they have the
same job_title and mgr, display the rows within that job_title and mgr by hiredate:

select *
from empl
order by job_title, mgr, hiredate;

...and you can see that this is indeed the case in the resulting rows:

CS 325 - SQL Reading Packet 5: "order by, group by, and having" p. 4
Sharon Tuttle - last modified: 2021-09-10

Turner
Michaels
Raimi
Blake
Jones

EMPL_LAST_NAME

Scott
Ford
King

14 rows selected.

And, just to make sure this is clear: order by just affects the order that the rows selected by the rest
of the select are displayed; if you only select a few rows, then only those rows are in the ordered
result:

select salary, empl_last_name
from empl
where job_title = 'Manager'
order by empl_last_name;

This query has the results:

 SALARY EMPL_LAST_NAME
---------- ---------------
 2850 Blake
 2975 Jones
 2450 Raimi

Multiple attributes in an order by clause
What happens if you give multiple attributes (or expressions) in the order by clause, separated by
commas? Then you are specifying additional ordering information -- you are saying what to sort by in
case of TIES in the previous expression(s) given in the order by.

Say that I want to select all the rows of empl, displaying the rows in order of job_title, and if they
have the same job_title, display the rows within that job_title by mgr, and if they have the
same job_title and mgr, display the rows within that job_title and mgr by hiredate:

select *
from empl
order by job_title, mgr, hiredate;

...and you can see that this is indeed the case in the resulting rows:

CS 325 - SQL Reading Packet 5: "order by, group by, and having" p. 5
Sharon Tuttle - last modified: 2021-09-10

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
7902 Ford Analyst 7566 03-DEC-12 3000 200
7788 Scott Analyst 7566 09-NOV-18 3000 200
7900 James Clerk 7698 03-DEC-17 950 300
7934 Miller Clerk 7782 23-JAN-16 1300 100
7876 Adams Clerk 7788 23-SEP-18 1100 400
7369 Smith Clerk 7902 17-DEC-12 800 200
7566 Jones Manager 7839 02-APR-12 2975 200
7782 Raimi Manager 7839 09-JUN-12 2450 100
7698 Blake Manager 7839 01-MAY-13 2850 300
7839 King President 17-NOV-11 5000 500
7499 Michaels Sales 7698 20-FEB-18 1600 300 300

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
7654 Martin Sales 7698 28-SEP-18 1250 1400 300
7521 Ward Sales 7698 22-FEB-19 1250 500 300
7844 Turner Sales 7698 08-SEP-19 1500 0 300

14 rows selected.

You could say that we are displaying the rows in primary order by job_title, in secondary order by
mgr, and in 3rd-level order by hiredate.

NULL columns and order by
You might wonder: what happens with NULL columns if you order by those columns?

select empl_last_name, job_title, commission
from empl
order by commission;

Try it, and you'll see that the result is:

EMPL_LAST_NAME JOB_TITLE COMMISSION
--------------- ---------- ----------
Turner Sales 0
Michaels Sales 300
Ward Sales 500
Martin Sales 1400
Ford Analyst
Smith Clerk
Miller Clerk
Jones Manager
Raimi Manager
Scott Analyst
King President

CS 325 - SQL Reading Packet 5: "order by, group by, and having" p. 5
Sharon Tuttle - last modified: 2021-09-10

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
7902 Ford Analyst 7566 03-DEC-12 3000 200
7788 Scott Analyst 7566 09-NOV-18 3000 200
7900 James Clerk 7698 03-DEC-17 950 300
7934 Miller Clerk 7782 23-JAN-16 1300 100
7876 Adams Clerk 7788 23-SEP-18 1100 400
7369 Smith Clerk 7902 17-DEC-12 800 200
7566 Jones Manager 7839 02-APR-12 2975 200
7782 Raimi Manager 7839 09-JUN-12 2450 100
7698 Blake Manager 7839 01-MAY-13 2850 300
7839 King President 17-NOV-11 5000 500
7499 Michaels Sales 7698 20-FEB-18 1600 300 300

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
7654 Martin Sales 7698 28-SEP-18 1250 1400 300
7521 Ward Sales 7698 22-FEB-19 1250 500 300
7844 Turner Sales 7698 08-SEP-19 1500 0 300

14 rows selected.

You could say that we are displaying the rows in primary order by job_title, in secondary order by
mgr, and in 3rd-level order by hiredate.

NULL columns and order by
You might wonder: what happens with NULL columns if you order by those columns?

select empl_last_name, job_title, commission
from empl
order by commission;

Try it, and you'll see that the result is:

EMPL_LAST_NAME JOB_TITLE COMMISSION
--------------- ---------- ----------
Turner Sales 0
Michaels Sales 300
Ward Sales 500
Martin Sales 1400
Ford Analyst
Smith Clerk
Miller Clerk
Jones Manager
Raimi Manager
Scott Analyst
King President

CS 325 - SQL Reading Packet 5: "order by, group by, and having" p. 6
Sharon Tuttle - last modified: 2021-09-10

EMPL_LAST_NAME JOB_TITLE COMMISSION
--------------- ---------- ----------
Adams Clerk
James Clerk
Blake Manager

14 rows selected.

Similarly, if you perform the query:

select *
from empl
order by mgr;

This has the results:

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
7788 Scott Analyst 7566 09-NOV-18 3000 200
7902 Ford Analyst 7566 03-DEC-12 3000 200
7499 Michaels Sales 7698 20-FEB-18 1600 300 300
7900 James Clerk 7698 03-DEC-17 950 300
7844 Turner Sales 7698 08-SEP-19 1500 0 300
7654 Martin Sales 7698 28-SEP-18 1250 1400 300
7521 Ward Sales 7698 22-FEB-19 1250 500 300
7934 Miller Clerk 7782 23-JAN-16 1300 100
7876 Adams Clerk 7788 23-SEP-18 1100 400
7566 Jones Manager 7839 02-APR-12 2975 200
7782 Raimi Manager 7839 09-JUN-12 2450 100

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
7698 Blake Manager 7839 01-MAY-13 2850 300
7369 Smith Clerk 7902 17-DEC-12 800 200
7839 King President 17-NOV-11 5000 500

14 rows selected.

In these results, notice that the row for President King is the last displayed, as it is the only row
containing a value of NULL for mgr.

order by: DESC option and ASC default

Have you noticed that all of our orderings have been in ascending order so far? That's the default for
order by. You can order rows in descending order of some expression by writing a blank, and then
DESC, after the expression you want to order in descending order.

So, if you'd like to select the rows of the empl table, displaying the resulting rows by salary, with

CS 325 - SQL Reading Packet 5: "order by, group by, and having" p. 6
Sharon Tuttle - last modified: 2021-09-10

EMPL_LAST_NAME JOB_TITLE COMMISSION
--------------- ---------- ----------
Adams Clerk
James Clerk
Blake Manager

14 rows selected.

Similarly, if you perform the query:

select *
from empl
order by mgr;

This has the results:

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
7788 Scott Analyst 7566 09-NOV-18 3000 200
7902 Ford Analyst 7566 03-DEC-12 3000 200
7499 Michaels Sales 7698 20-FEB-18 1600 300 300
7900 James Clerk 7698 03-DEC-17 950 300
7844 Turner Sales 7698 08-SEP-19 1500 0 300
7654 Martin Sales 7698 28-SEP-18 1250 1400 300
7521 Ward Sales 7698 22-FEB-19 1250 500 300
7934 Miller Clerk 7782 23-JAN-16 1300 100
7876 Adams Clerk 7788 23-SEP-18 1100 400
7566 Jones Manager 7839 02-APR-12 2975 200
7782 Raimi Manager 7839 09-JUN-12 2450 100

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
7698 Blake Manager 7839 01-MAY-13 2850 300
7369 Smith Clerk 7902 17-DEC-12 800 200
7839 King President 17-NOV-11 5000 500

14 rows selected.

In these results, notice that the row for President King is the last displayed, as it is the only row
containing a value of NULL for mgr.

order by: DESC option and ASC default

Have you noticed that all of our orderings have been in ascending order so far? That's the default for
order by. You can order rows in descending order of some expression by writing a blank, and then
DESC, after the expression you want to order in descending order.

So, if you'd like to select the rows of the empl table, displaying the resulting rows by salary, with

CS 325 - SQL Reading Packet 5: "order by, group by, and having" p. 7
Sharon Tuttle - last modified: 2021-09-10

the HIGHEST salary first (in descending order of salary), you just write:

select *
from empl
order by salary desc;

This query has the results:

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
7839 King President 17-NOV-11 5000 500
7902 Ford Analyst 7566 03-DEC-12 3000 200
7788 Scott Analyst 7566 09-NOV-18 3000 200
7566 Jones Manager 7839 02-APR-12 2975 200
7698 Blake Manager 7839 01-MAY-13 2850 300
7782 Raimi Manager 7839 09-JUN-12 2450 100
7499 Michaels Sales 7698 20-FEB-18 1600 300 300
7844 Turner Sales 7698 08-SEP-19 1500 0 300
7934 Miller Clerk 7782 23-JAN-16 1300 100
7521 Ward Sales 7698 22-FEB-19 1250 500 300
7654 Martin Sales 7698 28-SEP-18 1250 1400 300

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
7876 Adams Clerk 7788 23-SEP-18 1100 400
7900 James Clerk 7698 03-DEC-17 950 300
7369 Smith Clerk 7902 17-DEC-12 800 200

14 rows selected.

Make sure this is clear: you put DESC after EACH attribute that you want in descending order; if you
are specifying secondary or additional orderings, you must put DESC after each expression that you
want to be displayed in DESC order. For example, if you are selecting the rows of the empl table and
you'd like to display the rows:
* in descending alphabetical order by job_title,
* but for rows with the same job_title, in ascending order by mgr,
* but for rows with the same job_title and mgr, in descending order by hiredate,

...you'd put:

select *
from empl
order by job_title desc, mgr, hiredate desc;

...resulting in:

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
7844 Turner Sales 7698 08-SEP-19 1500 0 300

CS 325 - SQL Reading Packet 5: "order by, group by, and having" p. 7
Sharon Tuttle - last modified: 2021-09-10

the HIGHEST salary first (in descending order of salary), you just write:

select *
from empl
order by salary desc;

This query has the results:

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
7839 King President 17-NOV-11 5000 500
7902 Ford Analyst 7566 03-DEC-12 3000 200
7788 Scott Analyst 7566 09-NOV-18 3000 200
7566 Jones Manager 7839 02-APR-12 2975 200
7698 Blake Manager 7839 01-MAY-13 2850 300
7782 Raimi Manager 7839 09-JUN-12 2450 100
7499 Michaels Sales 7698 20-FEB-18 1600 300 300
7844 Turner Sales 7698 08-SEP-19 1500 0 300
7934 Miller Clerk 7782 23-JAN-16 1300 100
7521 Ward Sales 7698 22-FEB-19 1250 500 300
7654 Martin Sales 7698 28-SEP-18 1250 1400 300

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
7876 Adams Clerk 7788 23-SEP-18 1100 400
7900 James Clerk 7698 03-DEC-17 950 300
7369 Smith Clerk 7902 17-DEC-12 800 200

14 rows selected.

Make sure this is clear: you put DESC after EACH attribute that you want in descending order; if you
are specifying secondary or additional orderings, you must put DESC after each expression that you
want to be displayed in DESC order. For example, if you are selecting the rows of the empl table and
you'd like to display the rows:
* in descending alphabetical order by job_title,
* but for rows with the same job_title, in ascending order by mgr,
* but for rows with the same job_title and mgr, in descending order by hiredate,

...you'd put:

select *
from empl
order by job_title desc, mgr, hiredate desc;

...resulting in:

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
7844 Turner Sales 7698 08-SEP-19 1500 0 300

CS 325 - SQL Reading Packet 5: "order by, group by, and having" p. 8
Sharon Tuttle - last modified: 2021-09-10

7521 Ward Sales 7698 22-FEB-19 1250 500 300
7654 Martin Sales 7698 28-SEP-18 1250 1400 300
7499 Michaels Sales 7698 20-FEB-18 1600 300 300
7839 King President 17-NOV-11 5000 500
7698 Blake Manager 7839 01-MAY-13 2850 300
7782 Raimi Manager 7839 09-JUN-12 2450 100
7566 Jones Manager 7839 02-APR-12 2975 200
7900 James Clerk 7698 03-DEC-17 950 300
7934 Miller Clerk 7782 23-JAN-16 1300 100
7876 Adams Clerk 7788 23-SEP-18 1100 400

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
7369 Smith Clerk 7902 17-DEC-12 800 200
7788 Scott Analyst 7566 09-NOV-18 3000 200
7902 Ford Analyst 7566 03-DEC-12 3000 200

14 rows selected.

And, if you'd like to display those those rows in primary order of increasing salary, and in secondary
order of decreasing hiredate, you'd put:

select *
from empl
order by salary, hiredate desc;

...resulting in:

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
7369 Smith Clerk 7902 17-DEC-12 800 200
7900 James Clerk 7698 03-DEC-17 950 300
7876 Adams Clerk 7788 23-SEP-18 1100 400
7521 Ward Sales 7698 22-FEB-19 1250 500 300
7654 Martin Sales 7698 28-SEP-18 1250 1400 300
7934 Miller Clerk 7782 23-JAN-16 1300 100
7844 Turner Sales 7698 08-SEP-19 1500 0 300
7499 Michaels Sales 7698 20-FEB-18 1600 300 300
7782 Raimi Manager 7839 09-JUN-12 2450 100
7698 Blake Manager 7839 01-MAY-13 2850 300
7566 Jones Manager 7839 02-APR-12 2975 200

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
7788 Scott Analyst 7566 09-NOV-18 3000 200
7902 Ford Analyst 7566 03-DEC-12 3000 200
7839 King President 17-NOV-11 5000 500

14 rows selected.

order by style warning
One final comment with regard to order by: do not use it in a nested select! First, it is not good
style, and second, it doesn't make sense, anyway, if you really think about it. It is only reasonable at the

CS 325 - SQL Reading Packet 5: "order by, group by, and having" p. 8
Sharon Tuttle - last modified: 2021-09-10

7521 Ward Sales 7698 22-FEB-19 1250 500 300
7654 Martin Sales 7698 28-SEP-18 1250 1400 300
7499 Michaels Sales 7698 20-FEB-18 1600 300 300
7839 King President 17-NOV-11 5000 500
7698 Blake Manager 7839 01-MAY-13 2850 300
7782 Raimi Manager 7839 09-JUN-12 2450 100
7566 Jones Manager 7839 02-APR-12 2975 200
7900 James Clerk 7698 03-DEC-17 950 300
7934 Miller Clerk 7782 23-JAN-16 1300 100
7876 Adams Clerk 7788 23-SEP-18 1100 400

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
7369 Smith Clerk 7902 17-DEC-12 800 200
7788 Scott Analyst 7566 09-NOV-18 3000 200
7902 Ford Analyst 7566 03-DEC-12 3000 200

14 rows selected.

And, if you'd like to display those those rows in primary order of increasing salary, and in secondary
order of decreasing hiredate, you'd put:

select *
from empl
order by salary, hiredate desc;

...resulting in:

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
7369 Smith Clerk 7902 17-DEC-12 800 200
7900 James Clerk 7698 03-DEC-17 950 300
7876 Adams Clerk 7788 23-SEP-18 1100 400
7521 Ward Sales 7698 22-FEB-19 1250 500 300
7654 Martin Sales 7698 28-SEP-18 1250 1400 300
7934 Miller Clerk 7782 23-JAN-16 1300 100
7844 Turner Sales 7698 08-SEP-19 1500 0 300
7499 Michaels Sales 7698 20-FEB-18 1600 300 300
7782 Raimi Manager 7839 09-JUN-12 2450 100
7698 Blake Manager 7839 01-MAY-13 2850 300
7566 Jones Manager 7839 02-APR-12 2975 200

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
7788 Scott Analyst 7566 09-NOV-18 3000 200
7902 Ford Analyst 7566 03-DEC-12 3000 200
7839 King President 17-NOV-11 5000 500

14 rows selected.

order by style warning
One final comment with regard to order by: do not use it in a nested select! First, it is not good
style, and second, it doesn't make sense, anyway, if you really think about it. It is only reasonable at the

CS 325 - SQL Reading Packet 5: "order by, group by, and having" p. 9
Sharon Tuttle - last modified: 2021-09-10

END of a top-level (or "outermost") select. This will be a Course SQL Coding Standard, that order
by clauses must only be given for top-level/"outermost" selects.

For example, then, it will go AFTER and OUTSIDE a nested select (and thus as part of the top-level
select):

select *
from empl
where salary >
 (select min(salary)
 from empl
 where job_title = 'Manager')
order by salary;

...resulting in:

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
7698 Blake Manager 7839 01-MAY-13 2850 300
7566 Jones Manager 7839 02-APR-12 2975 200
7788 Scott Analyst 7566 09-NOV-18 3000 200
7902 Ford Analyst 7566 03-DEC-12 3000 200
7839 King President 17-NOV-11 5000 500

group by
group by is a clause that takes more effort to get comfortable with than order by, but allows for
some quite nifty queries of your data. group by provides a way to "group" rows sharing common
characteristics, usually so you can perform aggregate function computations on rows within those
"groups".

The easiest way to get used to group by is by example. You already know how to get the average
salary of all employees, or for all employees whose job_title is 'Manager', or for all
employees who work in the 'Research' department -- respectively:

select avg(salary)
from empl;

...resulting in:

AVG(SALARY)

 2073.21429

select avg(salary)
from empl
where job_title = 'Manager';

...resulting in:

CS 325 - SQL Reading Packet 5: "order by, group by, and having" p. 9
Sharon Tuttle - last modified: 2021-09-10

END of a top-level (or "outermost") select. This will be a Course SQL Coding Standard, that order
by clauses must only be given for top-level/"outermost" selects.

For example, then, it will go AFTER and OUTSIDE a nested select (and thus as part of the top-level
select):

select *
from empl
where salary >
 (select min(salary)
 from empl
 where job_title = 'Manager')
order by salary;

...resulting in:

EMPL EMPL_LAST_NAME JOB_TITLE MGR HIREDATE SALARY COMMISSION DEP
---- --------------- ---------- ---- --------- ---------- ---------- ---
7698 Blake Manager 7839 01-MAY-13 2850 300
7566 Jones Manager 7839 02-APR-12 2975 200
7788 Scott Analyst 7566 09-NOV-18 3000 200
7902 Ford Analyst 7566 03-DEC-12 3000 200
7839 King President 17-NOV-11 5000 500

group by
group by is a clause that takes more effort to get comfortable with than order by, but allows for
some quite nifty queries of your data. group by provides a way to "group" rows sharing common
characteristics, usually so you can perform aggregate function computations on rows within those
"groups".

The easiest way to get used to group by is by example. You already know how to get the average
salary of all employees, or for all employees whose job_title is 'Manager', or for all
employees who work in the 'Research' department -- respectively:

select avg(salary)
from empl;

...resulting in:

AVG(SALARY)

 2073.21429

select avg(salary)
from empl
where job_title = 'Manager';

...resulting in:

CS 325 - SQL Reading Packet 5: "order by, group by, and having" p. 10
Sharon Tuttle - last modified: 2021-09-10

AVG(SALARY)

 2758.33333

and:

select avg(salary)
from empl e, dept d
where e.dept_num = d.dept_num
 and dept_name = 'Research';

...resulting in:

AVG(SALARY)

 2443.75

But each of these queries returns just a single result, just a single row.

What group by provides is a way to get computations for different groups of rows from a single
query -- if you would like to get the average salary for employees who are Managers, AND for
employees who are Clerks, AND for employees who are Salesmen, etc., for all job_titles, then
you group by job_title:

select avg(salary)
from empl
group by job_title;

That is, this says, get the rows of empl, group those rows by job_title, and project the average
salary for each of those groups. So, the above query results in:

AVG(SALARY)

 2758.33333
 3000
 1037.5
 5000
 1400

You are also allowed to project a column you are grouping by along with any computations on those
groups -- so, if you group by job_title, then you can also project job_title, if you would like,
and result is that you see WHICH job_title has each average:

select job_title, avg(salary)
from empl
group by job_title;

...resulting in:

JOB_TITLE AVG(SALARY)
---------- -----------
Manager 2758.33333

CS 325 - SQL Reading Packet 5: "order by, group by, and having" p. 10
Sharon Tuttle - last modified: 2021-09-10

AVG(SALARY)

 2758.33333

and:

select avg(salary)
from empl e, dept d
where e.dept_num = d.dept_num
 and dept_name = 'Research';

...resulting in:

AVG(SALARY)

 2443.75

But each of these queries returns just a single result, just a single row.

What group by provides is a way to get computations for different groups of rows from a single
query -- if you would like to get the average salary for employees who are Managers, AND for
employees who are Clerks, AND for employees who are Salesmen, etc., for all job_titles, then
you group by job_title:

select avg(salary)
from empl
group by job_title;

That is, this says, get the rows of empl, group those rows by job_title, and project the average
salary for each of those groups. So, the above query results in:

AVG(SALARY)

 2758.33333
 3000
 1037.5
 5000
 1400

You are also allowed to project a column you are grouping by along with any computations on those
groups -- so, if you group by job_title, then you can also project job_title, if you would like,
and result is that you see WHICH job_title has each average:

select job_title, avg(salary)
from empl
group by job_title;

...resulting in:

JOB_TITLE AVG(SALARY)
---------- -----------
Manager 2758.33333

CS 325 - SQL Reading Packet 5: "order by, group by, and having" p. 11
Sharon Tuttle - last modified: 2021-09-10

Analyst 3000
Clerk 1037.5
President 5000
Sales 1400

Where does group by "fit" in terms of the select statement syntax?
* You still perform any Cartesian products given in the FROM clause first,
* and then you select those rows from that Cartesian product that satisfy the condition(s) given in the

WHERE clause.
* Then, if there is a group by clause, you group only the selected rows by the expression given in

the group by clause,
* and then you project what is specified in the select clause, usually the desired computations for

each of those groups, and the expression you are grouping by if desired,
* ordering the rows as specified by the order by clause if it is there!

So, consider this query:

select dept_name, avg(salary)
from empl e, dept d
where e.dept_num = d.dept_num
group by dept_name
order by avg(salary);

This will:
* perform a Cartesian product of the empl and dept tables,
* then select those rows of the Cartesian product in which e.dept_num = d.dept_num (thus

performing an equi-join!),
* then, only in the rows for which e.dept_num = d.dept_num, it will group the rows by

dept_name,
* then it will project the dept_name and the average salary for each set of rows grouped by

dept_name,
* displaying the resulting rows in order of (increasing) average salary.

So, you would see the following:

DEPT_NAME AVG(SALARY)
--------------- -----------
Operations 1100
Sales 1566.66667
Accounting 1875
Research 2443.75
Management 5000

What if you would like the minimum and maximum salaries, minimum and maximum hiredates,
salary totals, and number of employees for each value of dept_num? Then this would do the trick
(although I'm projecting this information in a different order than stated above, just to make the point
that you can project these columns in any order you want, and I'm happening to order the resulting
rows by minimum salary):

CS 325 - SQL Reading Packet 5: "order by, group by, and having" p. 11
Sharon Tuttle - last modified: 2021-09-10

Analyst 3000
Clerk 1037.5
President 5000
Sales 1400

Where does group by "fit" in terms of the select statement syntax?
* You still perform any Cartesian products given in the FROM clause first,
* and then you select those rows from that Cartesian product that satisfy the condition(s) given in the

WHERE clause.
* Then, if there is a group by clause, you group only the selected rows by the expression given in

the group by clause,
* and then you project what is specified in the select clause, usually the desired computations for

each of those groups, and the expression you are grouping by if desired,
* ordering the rows as specified by the order by clause if it is there!

So, consider this query:

select dept_name, avg(salary)
from empl e, dept d
where e.dept_num = d.dept_num
group by dept_name
order by avg(salary);

This will:
* perform a Cartesian product of the empl and dept tables,
* then select those rows of the Cartesian product in which e.dept_num = d.dept_num (thus

performing an equi-join!),
* then, only in the rows for which e.dept_num = d.dept_num, it will group the rows by

dept_name,
* then it will project the dept_name and the average salary for each set of rows grouped by

dept_name,
* displaying the resulting rows in order of (increasing) average salary.

So, you would see the following:

DEPT_NAME AVG(SALARY)
--------------- -----------
Operations 1100
Sales 1566.66667
Accounting 1875
Research 2443.75
Management 5000

What if you would like the minimum and maximum salaries, minimum and maximum hiredates,
salary totals, and number of employees for each value of dept_num? Then this would do the trick
(although I'm projecting this information in a different order than stated above, just to make the point
that you can project these columns in any order you want, and I'm happening to order the resulting
rows by minimum salary):

CS 325 - SQL Reading Packet 5: "order by, group by, and having" p. 12
Sharon Tuttle - last modified: 2021-09-10

select count(*), dept_num, min(salary), max(salary), min(hiredate),
 max(hiredate), sum(salary)
from empl
group by dept_num
order by min(salary);

...resulting in:

 COUNT(*) DEP MIN(SALARY) MAX(SALARY) MIN(HIRED MAX(HIRED SUM(SALARY)
---------- --- ----------- ----------- --------- --------- -----------
 4 200 800 3000 02-APR-12 09-NOV-18 9775
 6 300 950 2850 01-MAY-13 08-SEP-19 9400
 1 400 1100 1100 23-SEP-18 23-SEP-18 1100
 2 100 1300 2450 09-JUN-12 23-JAN-16 3750
 1 500 5000 5000 17-NOV-11 17-NOV-11 5000

I cannot stress the following two points enough:

* If you want to project MORE than one row in a query involving a projected aggregate function
call, then you MUST use group by; otherwise, you can ONLY get one row in the result.

* When you DO use group by, you get ONE row for EACH value of the attribute(s) or
expression(s) you are grouping by. You can only project, then, either computations on the
attributes of the rows within each group, or the attribute(s) or expression(s) you are grouping by.

Oracle is a stickler on the second part of that second point -- when using group by, you really cannot
project anything except the expression(s) you are grouping by or aggregate function calls for those
groups. (Think about it -- since group by essentially gives you "one row" per group, what would it
mean to try to project another attribute? To project empl_last_name when grouping by
job_title?) So, it is an error to try to do so, even if you know that the attribute's value happens to
be the same for all rows in a group. For example, this query will FAIL:

select dept_num, empl_last_name, min(salary), max(salary),
 min(hiredate), max(hiredate)

from empl
group by dept_num;

...giving the error message:

ERROR at line 1:
ORA-00979: not a group by expression

When you see this error message, chances are good you are using group by and trying to project
something that is not an aggregate function call and not what you are grouping by.

Likewise, this fails with the same error message; even though I know that dept_name is the same for
all rows with a given dept_num, Oracle doesn't know that:

select d.dept_num, dept_name, min(salary), max(salary),
 min(hiredate), max(hiredate)

CS 325 - SQL Reading Packet 5: "order by, group by, and having" p. 12
Sharon Tuttle - last modified: 2021-09-10

select count(*), dept_num, min(salary), max(salary), min(hiredate),
 max(hiredate), sum(salary)
from empl
group by dept_num
order by min(salary);

...resulting in:

 COUNT(*) DEP MIN(SALARY) MAX(SALARY) MIN(HIRED MAX(HIRED SUM(SALARY)
---------- --- ----------- ----------- --------- --------- -----------
 4 200 800 3000 02-APR-12 09-NOV-18 9775
 6 300 950 2850 01-MAY-13 08-SEP-19 9400
 1 400 1100 1100 23-SEP-18 23-SEP-18 1100
 2 100 1300 2450 09-JUN-12 23-JAN-16 3750
 1 500 5000 5000 17-NOV-11 17-NOV-11 5000

I cannot stress the following two points enough:

* If you want to project MORE than one row in a query involving a projected aggregate function
call, then you MUST use group by; otherwise, you can ONLY get one row in the result.

* When you DO use group by, you get ONE row for EACH value of the attribute(s) or
expression(s) you are grouping by. You can only project, then, either computations on the
attributes of the rows within each group, or the attribute(s) or expression(s) you are grouping by.

Oracle is a stickler on the second part of that second point -- when using group by, you really cannot
project anything except the expression(s) you are grouping by or aggregate function calls for those
groups. (Think about it -- since group by essentially gives you "one row" per group, what would it
mean to try to project another attribute? To project empl_last_name when grouping by
job_title?) So, it is an error to try to do so, even if you know that the attribute's value happens to
be the same for all rows in a group. For example, this query will FAIL:

select dept_num, empl_last_name, min(salary), max(salary),
 min(hiredate), max(hiredate)

from empl
group by dept_num;

...giving the error message:

ERROR at line 1:
ORA-00979: not a group by expression

When you see this error message, chances are good you are using group by and trying to project
something that is not an aggregate function call and not what you are grouping by.

Likewise, this fails with the same error message; even though I know that dept_name is the same for
all rows with a given dept_num, Oracle doesn't know that:

select d.dept_num, dept_name, min(salary), max(salary),
 min(hiredate), max(hiredate)

CS 325 - SQL Reading Packet 5: "order by, group by, and having" p. 13
Sharon Tuttle - last modified: 2021-09-10

from empl e, dept d
where e.dept_num = d.dept_num
group by d.dept_num;

...giving the error message:

ERROR at line 1:
ORA-00979: not a group by expression

Now, you CAN use multiple expressions after group by, separated by commas -- when you do that,
you will get a group for each distinct collection of values of those expressions. So, you could project
both dept_num and dept_name if you were to group by both dept_num and dept_name:

select d.dept_num, dept_name, min(salary), max(salary),
 min(hiredate), max(hiredate)

from empl e, dept d
where e.dept_num = d.dept_num
group by d.dept_num, dept_name;

...resulting in:

DEP DEPT_NAME MIN(SALARY) MAX(SALARY) MIN(HIRED MAX(HIRED
--- --------------- ----------- ----------- --------- ---------
200 Research 800 3000 02-APR-12 09-NOV-18
500 Management 5000 5000 17-NOV-11 17-NOV-11
100 Accounting 1300 2450 09-JUN-12 23-JAN-16
400 Operations 1100 1100 23-SEP-18 23-SEP-18
300 Sales 950 2850 01-MAY-13 08-SEP-19

But remember -- each distinct combination of values of those expressions is considered a separate
group:

select job_title, mgr, avg(salary), count(*)
from empl
group by job_title, mgr;

...resulting in:

JOB_TITLE MGR AVG(SALARY) COUNT(*)
---------- ---- ----------- ----------
Analyst 7566 3000 2
Clerk 7782 1300 1
Manager 7839 2758.33333 3
Sales 7698 1400 4
President 5000 1
Clerk 7902 800 1
Clerk 7788 1100 1
Clerk 7698 950 1

8 rows selected.

Each distinct (job_title, mgr) pair is a SEPARATE group, as you can see in the above results.

CS 325 - SQL Reading Packet 5: "order by, group by, and having" p. 13
Sharon Tuttle - last modified: 2021-09-10

from empl e, dept d
where e.dept_num = d.dept_num
group by d.dept_num;

...giving the error message:

ERROR at line 1:
ORA-00979: not a group by expression

Now, you CAN use multiple expressions after group by, separated by commas -- when you do that,
you will get a group for each distinct collection of values of those expressions. So, you could project
both dept_num and dept_name if you were to group by both dept_num and dept_name:

select d.dept_num, dept_name, min(salary), max(salary),
 min(hiredate), max(hiredate)

from empl e, dept d
where e.dept_num = d.dept_num
group by d.dept_num, dept_name;

...resulting in:

DEP DEPT_NAME MIN(SALARY) MAX(SALARY) MIN(HIRED MAX(HIRED
--- --------------- ----------- ----------- --------- ---------
200 Research 800 3000 02-APR-12 09-NOV-18
500 Management 5000 5000 17-NOV-11 17-NOV-11
100 Accounting 1300 2450 09-JUN-12 23-JAN-16
400 Operations 1100 1100 23-SEP-18 23-SEP-18
300 Sales 950 2850 01-MAY-13 08-SEP-19

But remember -- each distinct combination of values of those expressions is considered a separate
group:

select job_title, mgr, avg(salary), count(*)
from empl
group by job_title, mgr;

...resulting in:

JOB_TITLE MGR AVG(SALARY) COUNT(*)
---------- ---- ----------- ----------
Analyst 7566 3000 2
Clerk 7782 1300 1
Manager 7839 2758.33333 3
Sales 7698 1400 4
President 5000 1
Clerk 7902 800 1
Clerk 7788 1100 1
Clerk 7698 950 1

8 rows selected.

Each distinct (job_title, mgr) pair is a SEPARATE group, as you can see in the above results.

CS 325 - SQL Reading Packet 5: "order by, group by, and having" p. 14
Sharon Tuttle - last modified: 2021-09-10

Finally, it is Course SQL Style Standard that you should only use group by for a reason (usually,
because you want some computation for the rows in each group). If you aren't performing some
computation on the rows in each group, do not use group by. In particular, don't use it just to
suppress duplicate rows -- that is what DISTINCT is for!

-- POOR style: (you will lose points for this!)

select dept_name, job_title
from empl e, dept d
where e.dept_num = d.dept_num
group by dept_name, job_title;

-- BETTER style:

select distinct dept_name, job_title
from empl e, dept d
where e.dept_num = d.dept_num;

...which has the results:

DEPT_NAME JOB_TITLE
--------------- ----------
Accounting Clerk
Management President
Sales Manager
Accounting Manager
Research Clerk
Sales Sales
Research Manager
Operations Clerk
Sales Clerk
Research Analyst

10 rows selected.

-- ALSO good:

select dept_name, job_title, count(*), avg(salary)
from empl e, dept d
where e.dept_num = d.dept_num
group by dept_name, job_title;

...which has the results:

DEPT_NAME JOB_TITLE COUNT(*) AVG(SALARY)
--------------- ---------- ---------- -----------
Accounting Clerk 1 1300
Management President 1 5000
Sales Manager 1 2850
Accounting Manager 1 2450
Research Clerk 1 800
Sales Sales 4 1400

CS 325 - SQL Reading Packet 5: "order by, group by, and having" p. 14
Sharon Tuttle - last modified: 2021-09-10

Finally, it is Course SQL Style Standard that you should only use group by for a reason (usually,
because you want some computation for the rows in each group). If you aren't performing some
computation on the rows in each group, do not use group by. In particular, don't use it just to
suppress duplicate rows -- that is what DISTINCT is for!

-- POOR style: (you will lose points for this!)

select dept_name, job_title
from empl e, dept d
where e.dept_num = d.dept_num
group by dept_name, job_title;

-- BETTER style:

select distinct dept_name, job_title
from empl e, dept d
where e.dept_num = d.dept_num;

...which has the results:

DEPT_NAME JOB_TITLE
--------------- ----------
Accounting Clerk
Management President
Sales Manager
Accounting Manager
Research Clerk
Sales Sales
Research Manager
Operations Clerk
Sales Clerk
Research Analyst

10 rows selected.

-- ALSO good:

select dept_name, job_title, count(*), avg(salary)
from empl e, dept d
where e.dept_num = d.dept_num
group by dept_name, job_title;

...which has the results:

DEPT_NAME JOB_TITLE COUNT(*) AVG(SALARY)
--------------- ---------- ---------- -----------
Accounting Clerk 1 1300
Management President 1 5000
Sales Manager 1 2850
Accounting Manager 1 2450
Research Clerk 1 800
Sales Sales 4 1400

CS 325 - SQL Reading Packet 5: "order by, group by, and having" p. 15
Sharon Tuttle - last modified: 2021-09-10

Research Manager 1 2975
Operations Clerk 1 1100
Sales Clerk 1 950
Research Analyst 2 3000

10 rows selected.

group by can be part of any select, including a nested select, although you should be careful to use a
proper operator in the condition including the nested select in this case. In particular, note that, IF you
are using group by, you can have an aggregate function call whose expression is another aggregate
function -- you'd like the minimum of all of the averages, or the count of all of the maximums, or the
sum of all of the minimums, etc.

For example, to see which employees make more than or equal to the average salary for any one
department (even if not their own), you could write:

select empl_last_name, salary
from empl
where salary >=
 (select min(avg(salary))
 from empl
 group by dept_num);

...which has the results:

EMPL_LAST_NAME SALARY
--------------- ----------
King 5000
Jones 2975
Blake 2850
Raimi 2450
Ford 3000
Michaels 1600
Ward 1250
Martin 1250
Scott 3000
Turner 1500
Adams 1100

EMPL_LAST_NAME SALARY
--------------- ----------
Miller 1300

12 rows selected.

That subquery would work on its own, too -- if you just want to know the minimum average salary
for the employees with the same value of dept_num, this would do it:

select min(avg(salary))
from empl
group by dept_num;

...resulting in:

CS 325 - SQL Reading Packet 5: "order by, group by, and having" p. 15
Sharon Tuttle - last modified: 2021-09-10

Research Manager 1 2975
Operations Clerk 1 1100
Sales Clerk 1 950
Research Analyst 2 3000

10 rows selected.

group by can be part of any select, including a nested select, although you should be careful to use a
proper operator in the condition including the nested select in this case. In particular, note that, IF you
are using group by, you can have an aggregate function call whose expression is another aggregate
function -- you'd like the minimum of all of the averages, or the count of all of the maximums, or the
sum of all of the minimums, etc.

For example, to see which employees make more than or equal to the average salary for any one
department (even if not their own), you could write:

select empl_last_name, salary
from empl
where salary >=
 (select min(avg(salary))
 from empl
 group by dept_num);

...which has the results:

EMPL_LAST_NAME SALARY
--------------- ----------
King 5000
Jones 2975
Blake 2850
Raimi 2450
Ford 3000
Michaels 1600
Ward 1250
Martin 1250
Scott 3000
Turner 1500
Adams 1100

EMPL_LAST_NAME SALARY
--------------- ----------
Miller 1300

12 rows selected.

That subquery would work on its own, too -- if you just want to know the minimum average salary
for the employees with the same value of dept_num, this would do it:

select min(avg(salary))
from empl
group by dept_num;

...resulting in:

CS 325 - SQL Reading Packet 5: "order by, group by, and having" p. 16
Sharon Tuttle - last modified: 2021-09-10

MIN(AVG(SALARY))

 1100

Do not confuse order by and group by!
If you want your resulting rows to be displayed in a certain order, you STILL need order by -- it is
quite common for a query to have both group by and order by clauses. Using group by does
not guarantee that the resulting rows will be projected in a certain order; if you want a particular order
for the resulting rows of any query, order by is needed.

So, if I would like various statistics for each department with the resulting rows ordered by minimum
salary, this should be used:

select dept_num, min(salary), max(salary), min(hiredate),
 max(hiredate), sum(salary)
from empl
group by dept_num
order by min(salary);

...resulting in:

DEP MIN(SALARY) MAX(SALARY) MIN(HIRED MAX(HIRED SUM(SALARY)
--- ----------- ----------- --------- --------- -----------
200 800 3000 02-APR-12 09-NOV-18 9775
300 950 2850 01-MAY-13 08-SEP-19 9400
400 1100 1100 23-SEP-18 23-SEP-18 1100
100 1300 2450 09-JUN-12 23-JAN-16 3750
500 5000 5000 17-NOV-11 17-NOV-11 5000

Finally, it is important to remember that the selection of rows specified by a WHERE clause is done
BEFORE the grouping of the resulting rows specified by a group by clause. For example, what if
you'd like the average salary by department, but only for employees hired after January 15, 2016?
Then this will do that, because the selection based on hiredate will be done BEFORE the grouping
based on dept_num:

select dept_num, avg(salary), count(*)
from empl
where hiredate > '15-Jan-2016'
group by dept_num
order by count(*);

...resulting in:

DEP AVG(SALARY) COUNT(*)
--- ----------- ----------
100 1300 1
400 1100 1
200 3000 1
300 1310 5

CS 325 - SQL Reading Packet 5: "order by, group by, and having" p. 16
Sharon Tuttle - last modified: 2021-09-10

MIN(AVG(SALARY))

 1100

Do not confuse order by and group by!
If you want your resulting rows to be displayed in a certain order, you STILL need order by -- it is
quite common for a query to have both group by and order by clauses. Using group by does
not guarantee that the resulting rows will be projected in a certain order; if you want a particular order
for the resulting rows of any query, order by is needed.

So, if I would like various statistics for each department with the resulting rows ordered by minimum
salary, this should be used:

select dept_num, min(salary), max(salary), min(hiredate),
 max(hiredate), sum(salary)
from empl
group by dept_num
order by min(salary);

...resulting in:

DEP MIN(SALARY) MAX(SALARY) MIN(HIRED MAX(HIRED SUM(SALARY)
--- ----------- ----------- --------- --------- -----------
200 800 3000 02-APR-12 09-NOV-18 9775
300 950 2850 01-MAY-13 08-SEP-19 9400
400 1100 1100 23-SEP-18 23-SEP-18 1100
100 1300 2450 09-JUN-12 23-JAN-16 3750
500 5000 5000 17-NOV-11 17-NOV-11 5000

Finally, it is important to remember that the selection of rows specified by a WHERE clause is done
BEFORE the grouping of the resulting rows specified by a group by clause. For example, what if
you'd like the average salary by department, but only for employees hired after January 15, 2016?
Then this will do that, because the selection based on hiredate will be done BEFORE the grouping
based on dept_num:

select dept_num, avg(salary), count(*)
from empl
where hiredate > '15-Jan-2016'
group by dept_num
order by count(*);

...resulting in:

DEP AVG(SALARY) COUNT(*)
--- ----------- ----------
100 1300 1
400 1100 1
200 3000 1
300 1310 5

CS 325 - SQL Reading Packet 5: "order by, group by, and having" p. 17
Sharon Tuttle - last modified: 2021-09-10

That query's results will be different from the average salary by department overall:

select dept_num, avg(salary), count(*)
from empl
group by dept_num
order by count(*);

...which has the results:

DEP AVG(SALARY) COUNT(*)
--- ----------- ----------
400 1100 1
500 5000 1
100 1875 2
200 2443.75 4
300 1566.66667 6

having
Our final new select clause for this lab has a direct relationship to the group by clause. We've
discussed how a select statement's WHERE clause lets you specify which rows you want to select. What
if, however, you are using group by, but you don't really want to see the results for all of the groups?
What if you only want to see the results for some of the resulting groups?

That's what the having clause lets you do. having is to groups what WHERE is to rows -- it simply
gives you a way limit which groups you see in your result.

For example, what if I want dept_nums and average salaries for employees in each dept_num, but
I'm only interested in dept_nums with an average salary greater than 1500. You must use having
to get this:

select dept_num, avg(salary)
from empl
group by dept_num
having avg(salary) > 1500;

...which has the results:

DEP AVG(SALARY)
--- -----------
100 1875
200 2443.75
300 1566.66667
500 5000

And, of course, if you'd like to see those results in order of descending average salary, you could
use:

CS 325 - SQL Reading Packet 5: "order by, group by, and having" p. 17
Sharon Tuttle - last modified: 2021-09-10

That query's results will be different from the average salary by department overall:

select dept_num, avg(salary), count(*)
from empl
group by dept_num
order by count(*);

...which has the results:

DEP AVG(SALARY) COUNT(*)
--- ----------- ----------
400 1100 1
500 5000 1
100 1875 2
200 2443.75 4
300 1566.66667 6

having
Our final new select clause for this lab has a direct relationship to the group by clause. We've
discussed how a select statement's WHERE clause lets you specify which rows you want to select. What
if, however, you are using group by, but you don't really want to see the results for all of the groups?
What if you only want to see the results for some of the resulting groups?

That's what the having clause lets you do. having is to groups what WHERE is to rows -- it simply
gives you a way limit which groups you see in your result.

For example, what if I want dept_nums and average salaries for employees in each dept_num, but
I'm only interested in dept_nums with an average salary greater than 1500. You must use having
to get this:

select dept_num, avg(salary)
from empl
group by dept_num
having avg(salary) > 1500;

...which has the results:

DEP AVG(SALARY)
--- -----------
100 1875
200 2443.75
300 1566.66667
500 5000

And, of course, if you'd like to see those results in order of descending average salary, you could
use:

CS 325 - SQL Reading Packet 5: "order by, group by, and having" p. 18
Sharon Tuttle - last modified: 2021-09-10

select dept_num, avg(salary)
from empl
group by dept_num
having avg(salary) > 1500
order by avg(salary) desc;

...which has the results:

DEP AVG(SALARY)
--- -----------
500 5000
200 2443.75
100 1875
300 1566.66667

You can limit the groups in your result based on a variety of criteria, BUT those criteria have to be
"related" to the group, based on the grouped-by attributes, or on expressions using those attributes, or
to computations on the group.

So, to see the department number and average salary of those with that department number, but only
for dept_nums whose latest employee hiredate is after January 1, 2017, you could use:

select dept_num, avg(salary)
from empl
group by dept_num
having max(hiredate) > '01-Jan-2017'
order by avg(salary) desc;

...which has the results:

DEP AVG(SALARY)
--- -----------
200 2443.75
300 1566.66667
400 1100

And, to see the department number and average salary of those with that department number, but
only for dept_nums only for dept_nums 300, 400, and 500, you could use (noting that dept_num
is actually of type char(3)):

select dept_num, avg(salary)
from empl
group by dept_num
having dept_num in ('300', '400', '500')
order by avg(salary) desc;

...which has the results:

DEP AVG(SALARY)
--- -----------
500 5000
300 1566.66667
400 1100

CS 325 - SQL Reading Packet 5: "order by, group by, and having" p. 18
Sharon Tuttle - last modified: 2021-09-10

select dept_num, avg(salary)
from empl
group by dept_num
having avg(salary) > 1500
order by avg(salary) desc;

...which has the results:

DEP AVG(SALARY)
--- -----------
500 5000
200 2443.75
100 1875
300 1566.66667

You can limit the groups in your result based on a variety of criteria, BUT those criteria have to be
"related" to the group, based on the grouped-by attributes, or on expressions using those attributes, or
to computations on the group.

So, to see the department number and average salary of those with that department number, but only
for dept_nums whose latest employee hiredate is after January 1, 2017, you could use:

select dept_num, avg(salary)
from empl
group by dept_num
having max(hiredate) > '01-Jan-2017'
order by avg(salary) desc;

...which has the results:

DEP AVG(SALARY)
--- -----------
200 2443.75
300 1566.66667
400 1100

And, to see the department number and average salary of those with that department number, but
only for dept_nums only for dept_nums 300, 400, and 500, you could use (noting that dept_num
is actually of type char(3)):

select dept_num, avg(salary)
from empl
group by dept_num
having dept_num in ('300', '400', '500')
order by avg(salary) desc;

...which has the results:

DEP AVG(SALARY)
--- -----------
500 5000
300 1566.66667
400 1100

CS 325 - SQL Reading Packet 5: "order by, group by, and having" p. 19
Sharon Tuttle - last modified: 2021-09-10

What if I am interested in the average salaries within each department of employees hired before
January 1, 2013, and only for departments with average salary greater than 1500, displaying the
resulting rows in order of decreasing average salary? You could use:

select dept_num, avg(salary)
from empl
where hiredate < '01-Jan-2013'
group by dept_num
having avg(salary) > 1500
order by avg(salary) desc;

...which has the results:

DEP AVG(SALARY)
--- -----------
500 5000
100 2450
200 2258.33333

If we'd like the above, except projecting the department name instead of the department number, we
could use:

select dept_name, avg(salary)
from empl e, dept d
where e.dept_num = d.dept_num
 and hiredate < '01-Jan-2013'
group by dept_name
having avg(salary) > 1500
order by avg(salary) desc;

...which has the results:

DEPT_NAME AVG(SALARY)
--------------- -----------
Management 5000
Accounting 2450
Research 2258.33333

And, a having clause can be as interesting as we'd like...consider:

select dept_name, avg(salary)
from empl e, dept d
where e.dept_num = d.dept_num
group by dept_name
having avg(salary) > 1500
 and min(salary) < 4000
order by avg(salary) desc;

...which has the results:

CS 325 - SQL Reading Packet 5: "order by, group by, and having" p. 19
Sharon Tuttle - last modified: 2021-09-10

What if I am interested in the average salaries within each department of employees hired before
January 1, 2013, and only for departments with average salary greater than 1500, displaying the
resulting rows in order of decreasing average salary? You could use:

select dept_num, avg(salary)
from empl
where hiredate < '01-Jan-2013'
group by dept_num
having avg(salary) > 1500
order by avg(salary) desc;

...which has the results:

DEP AVG(SALARY)
--- -----------
500 5000
100 2450
200 2258.33333

If we'd like the above, except projecting the department name instead of the department number, we
could use:

select dept_name, avg(salary)
from empl e, dept d
where e.dept_num = d.dept_num
 and hiredate < '01-Jan-2013'
group by dept_name
having avg(salary) > 1500
order by avg(salary) desc;

...which has the results:

DEPT_NAME AVG(SALARY)
--------------- -----------
Management 5000
Accounting 2450
Research 2258.33333

And, a having clause can be as interesting as we'd like...consider:

select dept_name, avg(salary)
from empl e, dept d
where e.dept_num = d.dept_num
group by dept_name
having avg(salary) > 1500
 and min(salary) < 4000
order by avg(salary) desc;

...which has the results:

CS 325 - SQL Reading Packet 5: "order by, group by, and having" p. 20
Sharon Tuttle - last modified: 2021-09-10

DEPT_NAME AVG(SALARY)
--------------- -----------
Research 2443.75
Accounting 1875
Sales 1566.66667

distinct with Aggregate Functions
One final little SQL tidbit: you know that DISTINCT can be used in a select to get a "pure"
relational projection, to get a result with no duplicate rows. It turns out that you can use DISTINCT
within an aggregate function call, inside its parentheses, to get that function's results just for each
distinct value of that attribute.

For example, this simply counts how many rows of empl have non-NULL values for the attribute
job_title:

select count(job_title)
from empl;

...which happens to be

COUNT(JOB_TITLE)

 14

If I instead put:

select count(distinct job_title)
from empl;

...this will instead count how many distinct, or different, job_titles there are, and since there are 5
different job_title values amongst the 14 rows of empl, this query returns:

COUNT(DISTINCTJOB_TITLE)

 5

And this gives you a slightly prettier result:

select count(distinct job_title) "How Many Job-titles"
from empl;

...resulting in:

How Many Job-titles

 5

CS 325 - SQL Reading Packet 5: "order by, group by, and having" p. 20
Sharon Tuttle - last modified: 2021-09-10

DEPT_NAME AVG(SALARY)
--------------- -----------
Research 2443.75
Accounting 1875
Sales 1566.66667

distinct with Aggregate Functions
One final little SQL tidbit: you know that DISTINCT can be used in a select to get a "pure"
relational projection, to get a result with no duplicate rows. It turns out that you can use DISTINCT
within an aggregate function call, inside its parentheses, to get that function's results just for each
distinct value of that attribute.

For example, this simply counts how many rows of empl have non-NULL values for the attribute
job_title:

select count(job_title)
from empl;

...which happens to be

COUNT(JOB_TITLE)

 14

If I instead put:

select count(distinct job_title)
from empl;

...this will instead count how many distinct, or different, job_titles there are, and since there are 5
different job_title values amongst the 14 rows of empl, this query returns:

COUNT(DISTINCTJOB_TITLE)

 5

And this gives you a slightly prettier result:

select count(distinct job_title) "How Many Job-titles"
from empl;

...resulting in:

How Many Job-titles

 5

	SOURCES:
	more select clauses: order by, group by, and having
	order by
	Multiple attributes in an order by clause
	NULL columns and order by
	order by: DESC option and ASC default
	order by style warning

	group by
	Do not confuse order by and group by!

	having
	distinct with Aggregate Functions

