
CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 1
Sharon Tuttle - last modified: 2021-09-09

CS 325 - SQL Reading Packet 6: "Set-theoretic operations,
more on modifying data, and sequences"

Sources:
* Oracle9i Programming: A Primer, Rajshekhar Sunderraman, Addison Wesley.
* Classic Oracle example tables empl and dept, adapted somewhat over the years

more select operations: union, intersect, and minus
When we first mentioned the operations that could be done on relations, we mentioned that some were
based on set theory, and some were based on relational algebra. We then discussed the most-important
relational operations.

Now we will discuss the most important set-theoretic operations, and how to implement them using the
SQL select statement.

The set-theoretic operations are set operations that can be done on relations because they are sets --
sets of tuples, sets of rows. The three we will be discussing are union, intersection, and difference.

The union operation
You probably remember talking about the union of two sets in some past math class -- if a set A is
something like {1, 2, 3, 4, 5} and a set B is something like {2, 4, 6, 8}, then the union of sets A and B
is the set of everything that is in either set -- that is,

 A∪B = {1, 2, 3, 4, 5, 6, 8}

So, what does union mean when the sets involved are relations? It means the relation that is the set of
all tuples or rows that are in either of those relations; but, since the result of a relational operation has
to still be a relation, you cannot perform the union of just any two relations. You can only perform a
union of two so-called union-compatible relations: they have to have the same number of columns,
with compatible domains. Them, the resulting set of rows can still be a relation.

That is, if you have a table A, with:

col1 col2
----- -----
dog 13
cat 14
hamster 15

and a table B, with

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 1
Sharon Tuttle - last modified: 2021-09-09

CS 325 - SQL Reading Packet 6: "Set-theoretic operations,
more on modifying data, and sequences"

Sources:
* Oracle9i Programming: A Primer, Rajshekhar Sunderraman, Addison Wesley.
* Classic Oracle example tables empl and dept, adapted somewhat over the years

more select operations: union, intersect, and minus
When we first mentioned the operations that could be done on relations, we mentioned that some were
based on set theory, and some were based on relational algebra. We then discussed the most-important
relational operations.

Now we will discuss the most important set-theoretic operations, and how to implement them using the
SQL select statement.

The set-theoretic operations are set operations that can be done on relations because they are sets --
sets of tuples, sets of rows. The three we will be discussing are union, intersection, and difference.

The union operation
You probably remember talking about the union of two sets in some past math class -- if a set A is
something like {1, 2, 3, 4, 5} and a set B is something like {2, 4, 6, 8}, then the union of sets A and B
is the set of everything that is in either set -- that is,

 A∪B = {1, 2, 3, 4, 5, 6, 8}

So, what does union mean when the sets involved are relations? It means the relation that is the set of
all tuples or rows that are in either of those relations; but, since the result of a relational operation has
to still be a relation, you cannot perform the union of just any two relations. You can only perform a
union of two so-called union-compatible relations: they have to have the same number of columns,
with compatible domains. Them, the resulting set of rows can still be a relation.

That is, if you have a table A, with:

col1 col2
----- -----
dog 13
cat 14
hamster 15

and a table B, with

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 2
Sharon Tuttle - last modified: 2021-09-09

col1 col2
----- -----
chicken 18
cat 14
gerbil 20

...then A∪B would be the relation:

col1 col2
----- -----
dog 13
cat 14
hamster 15
chicken 18
gerbil 20

The intersection operation
You probably remember the basic intersection operation on sets as well -- if a set A is something like
{1, 2, 3, 4, 5} and a set B is something like {2, 4, 6, 8}, then the intersection of sets A and B is the set
of everything that is in both sets -- that is,

 A∩B = {2, 4}

It turns out that all of the set-theoretic operations for relations only apply to relations that are so-called
union-compatible (with the same number of columns, with compatible domains). For such relations,
then, the intersection of those relations will be the the relation that is the set of all tuples or rows that
are in both of those relations.

So, for table A with:

col1 col2
----- -----
dog 13
cat 14
hamster 15

and table B with:

col1 col2
----- -----
chicken 18
cat 14
gerbil 20

...then A∩B would be the relation:

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 2
Sharon Tuttle - last modified: 2021-09-09

col1 col2
----- -----
chicken 18
cat 14
gerbil 20

...then A∪B would be the relation:

col1 col2
----- -----
dog 13
cat 14
hamster 15
chicken 18
gerbil 20

The intersection operation
You probably remember the basic intersection operation on sets as well -- if a set A is something like
{1, 2, 3, 4, 5} and a set B is something like {2, 4, 6, 8}, then the intersection of sets A and B is the set
of everything that is in both sets -- that is,

 A∩B = {2, 4}

It turns out that all of the set-theoretic operations for relations only apply to relations that are so-called
union-compatible (with the same number of columns, with compatible domains). For such relations,
then, the intersection of those relations will be the the relation that is the set of all tuples or rows that
are in both of those relations.

So, for table A with:

col1 col2
----- -----
dog 13
cat 14
hamster 15

and table B with:

col1 col2
----- -----
chicken 18
cat 14
gerbil 20

...then A∩B would be the relation:

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 3
Sharon Tuttle - last modified: 2021-09-09

col1 col2
----- -----
cat 14

The difference operation
This is probably the least familiar of the three set-theoretic operations we will be discussing. In basic
set theory, the difference of two sets are those elements in the first set that are not in the second. That
is, for those sets A = {1, 2, 3, 4, 5} and B = {2, 4, 6, 8, 10},

A - B = {1, 3, 5}
and

B - A = {6, 8, 10}

And, again, difference on relations can only be done on relations that are so-called union-compatible,
and then it means the relation consisting of those tuples or rows from the first relation that are not in the
second relation.

So, for table A with:

col1 col2
----- -----
dog 13
cat 14
hamster 15

and table B with:

col1 col2
----- -----
chicken 18
cat 14
gerbil 20

...then A - B would be the relation:

col1 col2
----- -----
dog 13
hamster 15

...and B - A would be the relation:

col1 col2
----- -----
chicken 18
gerbil 20

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 3
Sharon Tuttle - last modified: 2021-09-09

col1 col2
----- -----
cat 14

The difference operation
This is probably the least familiar of the three set-theoretic operations we will be discussing. In basic
set theory, the difference of two sets are those elements in the first set that are not in the second. That
is, for those sets A = {1, 2, 3, 4, 5} and B = {2, 4, 6, 8, 10},

A - B = {1, 3, 5}
and

B - A = {6, 8, 10}

And, again, difference on relations can only be done on relations that are so-called union-compatible,
and then it means the relation consisting of those tuples or rows from the first relation that are not in the
second relation.

So, for table A with:

col1 col2
----- -----
dog 13
cat 14
hamster 15

and table B with:

col1 col2
----- -----
chicken 18
cat 14
gerbil 20

...then A - B would be the relation:

col1 col2
----- -----
dog 13
hamster 15

...and B - A would be the relation:

col1 col2
----- -----
chicken 18
gerbil 20

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 4
Sharon Tuttle - last modified: 2021-09-09

How to write queries using these set-theoretic operations in SQL
Above, we described each of these set-theoretic operations in general terms. Now, we'll describe how
you can write a SQL select statement including these operations.

Basically, there is an operator for each of these three, and each expects to be surrounded by two union-
compatible sub-selects. (You can choose to follow this with an order by clause following and outside
of the last of the sub-selects, if you wish.) The union operation can be performed using the union
operator, the intersection operation can be performed using the intersect operator, and the difference
operation can be performed using the minus operator. That is, (using [] to indicate that the order by is
optional, NOT as part of the syntax):

(sub-select)
union
(sub-select)
[order by ...];

(sub-select)
intersect
(sub-select)
[order by ...];

(sub-select)
minus
(sub-select)
[order by ...];

For example, the union of the department numbers of departments in Chicago and the department
numbers of employees who are managers could be expressed as:

(select dept_num
 from dept
 where dept_loc = 'Chicago')
union
(select dept_num
 from empl
 where job_title = 'Manager');

...which has the results:

DEP

100
200
300

What if you'd like to order the resulting union'ed rows in descending order of dept_num? Then that
order by clause needs to be at the very end, OUTSIDE of the parentheses for the second sub-select --
you are ordering the rows in the union'ed result, not of the second sub-select!:

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 4
Sharon Tuttle - last modified: 2021-09-09

How to write queries using these set-theoretic operations in SQL
Above, we described each of these set-theoretic operations in general terms. Now, we'll describe how
you can write a SQL select statement including these operations.

Basically, there is an operator for each of these three, and each expects to be surrounded by two union-
compatible sub-selects. (You can choose to follow this with an order by clause following and outside
of the last of the sub-selects, if you wish.) The union operation can be performed using the union
operator, the intersection operation can be performed using the intersect operator, and the difference
operation can be performed using the minus operator. That is, (using [] to indicate that the order by is
optional, NOT as part of the syntax):

(sub-select)
union
(sub-select)
[order by ...];

(sub-select)
intersect
(sub-select)
[order by ...];

(sub-select)
minus
(sub-select)
[order by ...];

For example, the union of the department numbers of departments in Chicago and the department
numbers of employees who are managers could be expressed as:

(select dept_num
 from dept
 where dept_loc = 'Chicago')
union
(select dept_num
 from empl
 where job_title = 'Manager');

...which has the results:

DEP

100
200
300

What if you'd like to order the resulting union'ed rows in descending order of dept_num? Then that
order by clause needs to be at the very end, OUTSIDE of the parentheses for the second sub-select --
you are ordering the rows in the union'ed result, not of the second sub-select!:

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 5
Sharon Tuttle - last modified: 2021-09-09

(select dept_num
 from dept
 where dept_loc = 'Chicago')
union
(select dept_num
 from empl
 where job_title = 'Manager')
order by dept_num desc;

...which has the results:

DEP

300
200
100

The intersection of the employee last names, dept_nums, and hiredates of employees hired before
January 1, 2013 with the employee last names, dept_nums, and hiredates of employees located in
Dallas, ordered by employee last name, could be expressed as:

(select empl_last_name, dept_num, hiredate
 from empl
 where hiredate < '01-Jan-2013')
intersect
(select empl_last_name, d.dept_num, hiredate
 from empl e, dept d
 where d.dept_num = e.dept_num
 and dept_loc = 'Dallas')
order by empl_last_name;

...which has the results:

EMPL_LAST_NAME DEP HIREDATE
--------------- --- ---------
Ford 200 03-DEC-12
Jones 200 02-APR-12
Smith 200 17-DEC-12

And the difference of the employee last names, dept_nums, and hiredates of employees hired before
January 1, 2013 with the employee last names, dept_nums, and hiredates of employees located in
Dallas, ordered by employee last name, could be expressed as:

(select empl_last_name, dept_num, hiredate
 from empl
 where hiredate < '01-Jan-2013')
minus
(select empl_last_name, d.dept_num, hiredate
 from empl e, dept d
 where d.dept_num = e.dept_num
 and dept_loc = 'Dallas')
order by empl_last_name;

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 5
Sharon Tuttle - last modified: 2021-09-09

(select dept_num
 from dept
 where dept_loc = 'Chicago')
union
(select dept_num
 from empl
 where job_title = 'Manager')
order by dept_num desc;

...which has the results:

DEP

300
200
100

The intersection of the employee last names, dept_nums, and hiredates of employees hired before
January 1, 2013 with the employee last names, dept_nums, and hiredates of employees located in
Dallas, ordered by employee last name, could be expressed as:

(select empl_last_name, dept_num, hiredate
 from empl
 where hiredate < '01-Jan-2013')
intersect
(select empl_last_name, d.dept_num, hiredate
 from empl e, dept d
 where d.dept_num = e.dept_num
 and dept_loc = 'Dallas')
order by empl_last_name;

...which has the results:

EMPL_LAST_NAME DEP HIREDATE
--------------- --- ---------
Ford 200 03-DEC-12
Jones 200 02-APR-12
Smith 200 17-DEC-12

And the difference of the employee last names, dept_nums, and hiredates of employees hired before
January 1, 2013 with the employee last names, dept_nums, and hiredates of employees located in
Dallas, ordered by employee last name, could be expressed as:

(select empl_last_name, dept_num, hiredate
 from empl
 where hiredate < '01-Jan-2013')
minus
(select empl_last_name, d.dept_num, hiredate
 from empl e, dept d
 where d.dept_num = e.dept_num
 and dept_loc = 'Dallas')
order by empl_last_name;

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 6
Sharon Tuttle - last modified: 2021-09-09

...which has the results:

EMPL_LAST_NAME DEP HIREDATE
--------------- --- ---------
King 500 17-NOV-11
Raimi 100 09-JUN-12

UNION ALL
If you look at the results of the union examples thus far, you will hopefully notice that you never get
duplicate rows in the results -- SQL's union operator, it turns out, results in a "true" set-theoretic union,
and as true sets never have duplicate elements, a "true" union of relations never has duplicate tuples or
rows, either.

Sometimes, though, when you write a query, you want duplicate rows (maybe you want to count
something about them, for example). You can get a non-"pure" union by using union all.

Run each of the following in SQL, and you should observe this difference in action:

(select empl_last_name, dept_num, hiredate
 from empl
 where hiredate < '01-Jan-2013')
union all
(select empl_last_name, d.dept_num, hiredate
 from empl e, dept d
 where d.dept_num = e.dept_num
 and dept_loc = 'Dallas')
order by empl_last_name;

(select empl_last_name, dept_num, hiredate
 from empl
 where hiredate < '01-Jan-2013')
union
(select empl_last_name, d.dept_num, hiredate
 from empl e, dept d
 where d.dept_num = e.dept_num
 and dept_loc = 'Dallas')
order by empl_last_name;

Some additional notes on using set-theoretic operations
Note that you will receive an error message if you attempt these operations with relations that the
DBMS can tell are obviously not union-compatible (for example, different numbers of columns
between the two sub-selects, or "different-enough" domains). Unfortunately, it cannot really tell if two
columns whose contents are of the same type really have the same meaning -- the same "true" domain.
So, these can result in nonsense results if you use them on more-subtly inappropriate sub-selects.

For example, here is an attempted union that will fail, because the two sub-selects result in relations
that are clearly not union-compatible, each having a different number of columns:

-- WILL FAIL!! not union-compatible!!

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 6
Sharon Tuttle - last modified: 2021-09-09

...which has the results:

EMPL_LAST_NAME DEP HIREDATE
--------------- --- ---------
King 500 17-NOV-11
Raimi 100 09-JUN-12

UNION ALL
If you look at the results of the union examples thus far, you will hopefully notice that you never get
duplicate rows in the results -- SQL's union operator, it turns out, results in a "true" set-theoretic union,
and as true sets never have duplicate elements, a "true" union of relations never has duplicate tuples or
rows, either.

Sometimes, though, when you write a query, you want duplicate rows (maybe you want to count
something about them, for example). You can get a non-"pure" union by using union all.

Run each of the following in SQL, and you should observe this difference in action:

(select empl_last_name, dept_num, hiredate
 from empl
 where hiredate < '01-Jan-2013')
union all
(select empl_last_name, d.dept_num, hiredate
 from empl e, dept d
 where d.dept_num = e.dept_num
 and dept_loc = 'Dallas')
order by empl_last_name;

(select empl_last_name, dept_num, hiredate
 from empl
 where hiredate < '01-Jan-2013')
union
(select empl_last_name, d.dept_num, hiredate
 from empl e, dept d
 where d.dept_num = e.dept_num
 and dept_loc = 'Dallas')
order by empl_last_name;

Some additional notes on using set-theoretic operations
Note that you will receive an error message if you attempt these operations with relations that the
DBMS can tell are obviously not union-compatible (for example, different numbers of columns
between the two sub-selects, or "different-enough" domains). Unfortunately, it cannot really tell if two
columns whose contents are of the same type really have the same meaning -- the same "true" domain.
So, these can result in nonsense results if you use them on more-subtly inappropriate sub-selects.

For example, here is an attempted union that will fail, because the two sub-selects result in relations
that are clearly not union-compatible, each having a different number of columns:

-- WILL FAIL!! not union-compatible!!

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 7
Sharon Tuttle - last modified: 2021-09-09

(select dept_num, dept_name
 from dept
 where dept_loc = 'Chicago')
union
(select dept_num
 from empl
 where job_title = 'Manager');

The above query results in the error message:

(select dept_num, dept_name
 *
ERROR at line 1:
ORA-01789: query block has incorrect number of result columns

Likewise, this attempted intersection will fail, because even though the relations resulting from the two
sub-selects have one column each, their domains are obviously different enough that Oracle can detect
it:

-- WILL ALSO FAIL!! also not union-compatible!!

(select dept_num
 from dept
 where dept_loc = 'Chicago')
union
(select salary
 from empl
 where job_title = 'Manager');

...although the error message in this case is a bit different (since the reason for it being not-union-
compatible is a bit different):

(select dept_num
 *
ERROR at line 1:
ORA-01790: expression must have same datatype as corresponding expression

But the following, sadly, will give results, although they don't make much sense, because the SQL
interpreter cannot tell if two "compatible" types are not compatible in terms of "true" meaning and
"true" domain:

(select dept_num
 from dept
 where dept_loc = 'Chicago')
union
(select empl_num
 from empl
 where job_title = 'Manager');

...which results in:

DEPT

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 7
Sharon Tuttle - last modified: 2021-09-09

(select dept_num, dept_name
 from dept
 where dept_loc = 'Chicago')
union
(select dept_num
 from empl
 where job_title = 'Manager');

The above query results in the error message:

(select dept_num, dept_name
 *
ERROR at line 1:
ORA-01789: query block has incorrect number of result columns

Likewise, this attempted intersection will fail, because even though the relations resulting from the two
sub-selects have one column each, their domains are obviously different enough that Oracle can detect
it:

-- WILL ALSO FAIL!! also not union-compatible!!

(select dept_num
 from dept
 where dept_loc = 'Chicago')
union
(select salary
 from empl
 where job_title = 'Manager');

...although the error message in this case is a bit different (since the reason for it being not-union-
compatible is a bit different):

(select dept_num
 *
ERROR at line 1:
ORA-01790: expression must have same datatype as corresponding expression

But the following, sadly, will give results, although they don't make much sense, because the SQL
interpreter cannot tell if two "compatible" types are not compatible in terms of "true" meaning and
"true" domain:

(select dept_num
 from dept
 where dept_loc = 'Chicago')
union
(select empl_num
 from empl
 where job_title = 'Manager');

...which results in:

DEPT

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 8
Sharon Tuttle - last modified: 2021-09-09

300
7566
7698
7782

Another note: the column names do not have to be the same in the sub-selects, as long as the number of
columns and the types are compatible:

(select empl_last_name, salary total_paid
 from empl
 where commission is null)
union
(select empl_last_name, salary + commission
 from empl
 where commission is not null);

...which has the results:

EMPL_LAST_NAME TOTAL_PAID
--------------- ----------
Adams 1100
Blake 2850
Ford 3000
James 950
Jones 2975
King 5000
Martin 2650
Michaels 1900
Miller 1300
Raimi 2450
Scott 3000

EMPL_LAST_NAME TOTAL_PAID
--------------- ----------
Smith 800
Turner 1500
Ward 1750

14 rows selected.

...which, by the way, finally gives us a reasonable way to project "total" compensation for employees
who just have salary and those who have both salary and commission! (Remember, if you try to just
project salary + commission for everyone, you get a NULL result for those with a NULL
commission...)

However, if you want to order the results, note that the order by at the end "sees" the column names
projected by the first sub-select -- you need to use whatever name that first sub-select uses for those
projected columns:

(select empl_last_name, salary "Total compensation"
 from empl

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 8
Sharon Tuttle - last modified: 2021-09-09

300
7566
7698
7782

Another note: the column names do not have to be the same in the sub-selects, as long as the number of
columns and the types are compatible:

(select empl_last_name, salary total_paid
 from empl
 where commission is null)
union
(select empl_last_name, salary + commission
 from empl
 where commission is not null);

...which has the results:

EMPL_LAST_NAME TOTAL_PAID
--------------- ----------
Adams 1100
Blake 2850
Ford 3000
James 950
Jones 2975
King 5000
Martin 2650
Michaels 1900
Miller 1300
Raimi 2450
Scott 3000

EMPL_LAST_NAME TOTAL_PAID
--------------- ----------
Smith 800
Turner 1500
Ward 1750

14 rows selected.

...which, by the way, finally gives us a reasonable way to project "total" compensation for employees
who just have salary and those who have both salary and commission! (Remember, if you try to just
project salary + commission for everyone, you get a NULL result for those with a NULL
commission...)

However, if you want to order the results, note that the order by at the end "sees" the column names
projected by the first sub-select -- you need to use whatever name that first sub-select uses for those
projected columns:

(select empl_last_name, salary "Total compensation"
 from empl

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 9
Sharon Tuttle - last modified: 2021-09-09

 where commission is null)
union
(select empl_last_name, salary + commission
 from empl
 where commission is not null)
order by "Total compensation";

...which has the results:

EMPL_LAST_NAME Total compensation
--------------- ------------------
Smith 800
James 950
Adams 1100
Miller 1300
Turner 1500
Ward 1750
Michaels 1900
Raimi 2450
Martin 2650
Blake 2850
Jones 2975

EMPL_LAST_NAME Total compensation
--------------- ------------------
Ford 3000
Scott 3000
King 5000

14 rows selected.

(Had you noticed that Oracle SQL*Plus always gives the column labels of the first sub-select in the
result?)

Sometimes you can use union to get results that you cannot with the select features we have
discussed so far.

Assume that we added a new department to the dept table:

insert into dept
values
('600', 'Computing', 'Arcata');

If you wanted to project the number of employees in each department -- even new departments with
now employees -- you might try:

select dept_name, count(*)
from empl e, dept d
where e.dept_num = d.dept_num
group by dept_name;

...which has the results:

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 9
Sharon Tuttle - last modified: 2021-09-09

 where commission is null)
union
(select empl_last_name, salary + commission
 from empl
 where commission is not null)
order by "Total compensation";

...which has the results:

EMPL_LAST_NAME Total compensation
--------------- ------------------
Smith 800
James 950
Adams 1100
Miller 1300
Turner 1500
Ward 1750
Michaels 1900
Raimi 2450
Martin 2650
Blake 2850
Jones 2975

EMPL_LAST_NAME Total compensation
--------------- ------------------
Ford 3000
Scott 3000
King 5000

14 rows selected.

(Had you noticed that Oracle SQL*Plus always gives the column labels of the first sub-select in the
result?)

Sometimes you can use union to get results that you cannot with the select features we have
discussed so far.

Assume that we added a new department to the dept table:

insert into dept
values
('600', 'Computing', 'Arcata');

If you wanted to project the number of employees in each department -- even new departments with
now employees -- you might try:

select dept_name, count(*)
from empl e, dept d
where e.dept_num = d.dept_num
group by dept_name;

...which has the results:

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 10
Sharon Tuttle - last modified: 2021-09-09

DEPT_NAME COUNT(*)
--------------- ----------
Research 4
Accounting 2
Management 1
Sales 6
Operations 1

However, this won't work -- the Computing department won't show up. A natural join and equi-join
will ALWAYS omit rows from one table that don't have a foreign key matching it in the other table. No
empl row has dept_num of 600, so the Computing department cannot show up in this query's result.

However, because you CAN project constants (as we saw in a previous week's lab), you could use a
union to combine the above result with the results of a sub-select grabbing department names and the
constant 0 for departments with NO employees:

(select dept_name, count(*) "# of Employees"
 from empl e, dept d
 where e.dept_num = d.dept_num
 group by dept_name)
union
(select dept_name, 0 "# of Employees"
 from dept d
 where not exists
 (select 'a'
 from empl e
 where e.dept_num = d.dept_num))
order by "# of Employees" desc;

...which has the results:

DEPT_NAME # of Employees
--------------- --------------
Sales 6
Research 4
Accounting 2
Management 1
Operations 1
Computing 0

6 rows selected.

Of course, if you would prefer another means besides not exists to see which departments have no
employees, you could use minus for that, requesting the difference between the dept_names of all
departments and the dept_names of the rows in the join of dept and empl:

(select dept_name
 from dept)
minus
(select dept_name
 from dept d, empl e

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 10
Sharon Tuttle - last modified: 2021-09-09

DEPT_NAME COUNT(*)
--------------- ----------
Research 4
Accounting 2
Management 1
Sales 6
Operations 1

However, this won't work -- the Computing department won't show up. A natural join and equi-join
will ALWAYS omit rows from one table that don't have a foreign key matching it in the other table. No
empl row has dept_num of 600, so the Computing department cannot show up in this query's result.

However, because you CAN project constants (as we saw in a previous week's lab), you could use a
union to combine the above result with the results of a sub-select grabbing department names and the
constant 0 for departments with NO employees:

(select dept_name, count(*) "# of Employees"
 from empl e, dept d
 where e.dept_num = d.dept_num
 group by dept_name)
union
(select dept_name, 0 "# of Employees"
 from dept d
 where not exists
 (select 'a'
 from empl e
 where e.dept_num = d.dept_num))
order by "# of Employees" desc;

...which has the results:

DEPT_NAME # of Employees
--------------- --------------
Sales 6
Research 4
Accounting 2
Management 1
Operations 1
Computing 0

6 rows selected.

Of course, if you would prefer another means besides not exists to see which departments have no
employees, you could use minus for that, requesting the difference between the dept_names of all
departments and the dept_names of the rows in the join of dept and empl:

(select dept_name
 from dept)
minus
(select dept_name
 from dept d, empl e

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 11
Sharon Tuttle - last modified: 2021-09-09

 where d.dept_num = e.dept_num);

...which has the results:

DEPT_NAME

Computing

So, this could work to get counts for all departments, also: (note the careful use of parentheses here!)
(and note that I had to give the 2nd sub-select a column alias to get this to work -- that wasn't true of
the earlier example. IF you get an error regarding what you are ordering by, use the same column alias
for ALL sub-selects involved...)

(select dept_name, count(*) "# of Employees"
 from empl e, dept d
 where e.dept_num = d.dept_num
 group by dept_name)
union
((select dept_name, 0 "# of Employees"
 from dept)
 minus
 (select dept_name, 0
 from dept d, empl e
 where d.dept_num = e.dept_num))
order by "# of Employees" desc;

...which has the results:

DEPT_NAME # of Employees
--------------- --------------
Sales 6
Research 4
Accounting 2
Management 1
Operations 1
Computing 0

6 rows selected.

The order by issue is worth a few more words: when an order by is at the end of a "regular" top-
level select that does NOT include distinct, you can order by any column, even if you aren't
projecting that column -- that is, this works just fine:

select empl_last_name
from empl
order by salary;

...which has the results:

EMPL_LAST_NAME

Smith

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 11
Sharon Tuttle - last modified: 2021-09-09

 where d.dept_num = e.dept_num);

...which has the results:

DEPT_NAME

Computing

So, this could work to get counts for all departments, also: (note the careful use of parentheses here!)
(and note that I had to give the 2nd sub-select a column alias to get this to work -- that wasn't true of
the earlier example. IF you get an error regarding what you are ordering by, use the same column alias
for ALL sub-selects involved...)

(select dept_name, count(*) "# of Employees"
 from empl e, dept d
 where e.dept_num = d.dept_num
 group by dept_name)
union
((select dept_name, 0 "# of Employees"
 from dept)
 minus
 (select dept_name, 0
 from dept d, empl e
 where d.dept_num = e.dept_num))
order by "# of Employees" desc;

...which has the results:

DEPT_NAME # of Employees
--------------- --------------
Sales 6
Research 4
Accounting 2
Management 1
Operations 1
Computing 0

6 rows selected.

The order by issue is worth a few more words: when an order by is at the end of a "regular" top-
level select that does NOT include distinct, you can order by any column, even if you aren't
projecting that column -- that is, this works just fine:

select empl_last_name
from empl
order by salary;

...which has the results:

EMPL_LAST_NAME

Smith

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 12
Sharon Tuttle - last modified: 2021-09-09

James
Adams
Martin
Ward
Miller
Turner
Michaels
Raimi
Blake
Jones

EMPL_LAST_NAME

Scott
Ford
King

14 rows selected.

However, when the order by is ordering the results of sub-selects being union'ed or minus'ed or
intersect'ed, that outer-level order by ONLY knows about the columns actually projected by the
sub-selects. That is, this query will NOT work:

-- this will NOT work -- because the outer-level's order by only
-- knows about the 3 columns projected by the minus'd sub-selects:

(select empl_last_name, dept_num, hiredate date_hired
 from empl
 where hiredate < '01-Jan-2013')
minus
(select empl_last_name, d.dept_num, hiredate
 from empl e, dept d
 where d.dept_num = e.dept_num
 and dept_loc = 'Dallas')
order by salary;

It will complain that:

order by salary
 *
ERROR at line 9:
ORA-00904: "SALARY": invalid identifier

But, this WILL work:
(select empl_last_name, dept_num, hiredate date_hired
 from empl
 where hiredate < '01-Jan-2013')
minus
(select empl_last_name, d.dept_num, hiredate
 from empl e, dept d
 where d.dept_num = e.dept_num
 and dept_loc = 'Dallas')
order by date_hired;

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 12
Sharon Tuttle - last modified: 2021-09-09

James
Adams
Martin
Ward
Miller
Turner
Michaels
Raimi
Blake
Jones

EMPL_LAST_NAME

Scott
Ford
King

14 rows selected.

However, when the order by is ordering the results of sub-selects being union'ed or minus'ed or
intersect'ed, that outer-level order by ONLY knows about the columns actually projected by the
sub-selects. That is, this query will NOT work:

-- this will NOT work -- because the outer-level's order by only
-- knows about the 3 columns projected by the minus'd sub-selects:

(select empl_last_name, dept_num, hiredate date_hired
 from empl
 where hiredate < '01-Jan-2013')
minus
(select empl_last_name, d.dept_num, hiredate
 from empl e, dept d
 where d.dept_num = e.dept_num
 and dept_loc = 'Dallas')
order by salary;

It will complain that:

order by salary
 *
ERROR at line 9:
ORA-00904: "SALARY": invalid identifier

But, this WILL work:
(select empl_last_name, dept_num, hiredate date_hired
 from empl
 where hiredate < '01-Jan-2013')
minus
(select empl_last_name, d.dept_num, hiredate
 from empl e, dept d
 where d.dept_num = e.dept_num
 and dept_loc = 'Dallas')
order by date_hired;

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 13
Sharon Tuttle - last modified: 2021-09-09

...which has the results:
EMPL_LAST_NAME DEP DATE_HIRE
--------------- --- ---------
King 500 17-NOV-11
Raimi 100 09-JUN-12

note on the "full" select syntax
Having covered union, intersect, and minus, we have now covered all of the major components of a
SQL select statement.

The posted '"Full" SELECT statement summary' summarizes the "full" select syntax and its
semantics; be sure to look over it, and let me know if you have any questions about it.

further manipulations of database contents: beyond insert
But, while querying a database is arguably the most important thing one does with a database, one also
needs to insert, update, and manipulate the data within that database in appropriate ways between such
queries. We've discussed basic row insertion into tables using the SQL insert statement; now we'll
discuss updating existing rows, and deleting rows. We'll also talk about an Oracle database object, a
sequence, that can make it easier to create suitable primary keys for tables over time.

brief aside: some demonstrations of Oracle DBMS support for
domain integrity

Consider the following parts table:

drop table parts cascade constraints;

create table parts
(part_num char(5),
 part_name varchar2(25),
 quantity_on_hand smallint,
 price decimal(6,2),
 level_code char(3), -- level code must be 3 digits
 last_inspected date,
 primary key (part_num)
);

Here is an example of a successful row insertion into this table:

insert into parts
values
('10601', '3/8 in lug nut', 1000, 0.02, '002', '09-SEP-2017');

And, here is an example of at least partial domain integrity support in action: the following insertion
will NOT work, because the given part name is longer than the attribute declaration for part_name
allows:

insert into parts

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 13
Sharon Tuttle - last modified: 2021-09-09

...which has the results:
EMPL_LAST_NAME DEP DATE_HIRE
--------------- --- ---------
King 500 17-NOV-11
Raimi 100 09-JUN-12

note on the "full" select syntax
Having covered union, intersect, and minus, we have now covered all of the major components of a
SQL select statement.

The posted '"Full" SELECT statement summary' summarizes the "full" select syntax and its
semantics; be sure to look over it, and let me know if you have any questions about it.

further manipulations of database contents: beyond insert
But, while querying a database is arguably the most important thing one does with a database, one also
needs to insert, update, and manipulate the data within that database in appropriate ways between such
queries. We've discussed basic row insertion into tables using the SQL insert statement; now we'll
discuss updating existing rows, and deleting rows. We'll also talk about an Oracle database object, a
sequence, that can make it easier to create suitable primary keys for tables over time.

brief aside: some demonstrations of Oracle DBMS support for
domain integrity

Consider the following parts table:

drop table parts cascade constraints;

create table parts
(part_num char(5),
 part_name varchar2(25),
 quantity_on_hand smallint,
 price decimal(6,2),
 level_code char(3), -- level code must be 3 digits
 last_inspected date,
 primary key (part_num)
);

Here is an example of a successful row insertion into this table:

insert into parts
values
('10601', '3/8 in lug nut', 1000, 0.02, '002', '09-SEP-2017');

And, here is an example of at least partial domain integrity support in action: the following insertion
will NOT work, because the given part name is longer than the attribute declaration for part_name
allows:

insert into parts

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 14
Sharon Tuttle - last modified: 2021-09-09

values
('10602', '5/8 in lug nut from Argentina or Brazil', 16, 4.50, '105',
 '04-SEP-2018');

Here's the error message that Oracle SQL*Plus gives when this is attempted:

('10602', '5/8 in lug nut from Argentina or Brazil', 16, 4.50, '105',
 *
ERROR at line 3:
ORA-12899: value too large for column "ST10"."PARTS"."PART_NAME" (actual: 39,
maximum: 25)

As another example, this insertion will fail because the price is too large for that attribute's declaration:

insert into parts
values
('10602', '5/8 in lug nut', 16, 10000.00, '105', '04-SEP-2019');

...resulting in the error message:

('10602', '5/8 in lug nut', 16, 10000.00, '105', '04-SEP-2019')
 *
ERROR at line 3:
ORA-01438: value larger than specified precision allows for this column

But all of these will succeed, and will help us in setting up our upcoming update and delete
examples:

insert into parts
values
('10603', 'hexagonal wrench', 13, 9.99, '003', '05-SEP-2018');

insert into parts
values
('10604', 'tire', 287, 39.99, '333', '06-SEP-2018');

insert into parts
values
('10605', 'hammer', 30, 9.99, '003', '01-SEP-2018');

insert into parts
values
('10606', '3/8 in bolt', 5000, 0.03, '005', '04-SEP-2019');

insert into parts
values
('10607', '7/8 in bolt', 2655, 0.04, '005', '02-SEP-2019');

So, at this point,

select *
from parts;

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 14
Sharon Tuttle - last modified: 2021-09-09

values
('10602', '5/8 in lug nut from Argentina or Brazil', 16, 4.50, '105',
 '04-SEP-2018');

Here's the error message that Oracle SQL*Plus gives when this is attempted:

('10602', '5/8 in lug nut from Argentina or Brazil', 16, 4.50, '105',
 *
ERROR at line 3:
ORA-12899: value too large for column "ST10"."PARTS"."PART_NAME" (actual: 39,
maximum: 25)

As another example, this insertion will fail because the price is too large for that attribute's declaration:

insert into parts
values
('10602', '5/8 in lug nut', 16, 10000.00, '105', '04-SEP-2019');

...resulting in the error message:

('10602', '5/8 in lug nut', 16, 10000.00, '105', '04-SEP-2019')
 *
ERROR at line 3:
ORA-01438: value larger than specified precision allows for this column

But all of these will succeed, and will help us in setting up our upcoming update and delete
examples:

insert into parts
values
('10603', 'hexagonal wrench', 13, 9.99, '003', '05-SEP-2018');

insert into parts
values
('10604', 'tire', 287, 39.99, '333', '06-SEP-2018');

insert into parts
values
('10605', 'hammer', 30, 9.99, '003', '01-SEP-2018');

insert into parts
values
('10606', '3/8 in bolt', 5000, 0.03, '005', '04-SEP-2019');

insert into parts
values
('10607', '7/8 in bolt', 2655, 0.04, '005', '02-SEP-2019');

So, at this point,

select *
from parts;

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 15
Sharon Tuttle - last modified: 2021-09-09

...has the results:

PART_ PART_NAME QUANTITY_ON_HAND PRICE LEV LAST_INSP
----- ------------------------- ---------------- ---------- --- ---------
10601 3/8 in lug nut 1000 .02 002 09-SEP-17
10603 hexagonal wrench 13 9.99 003 05-SEP-18
10604 tire 287 39.99 333 06-SEP-18
10605 hammer 30 9.99 003 01-SEP-18
10606 3/8 in bolt 5000 .03 005 04-SEP-19
10607 7/8 in bolt 2655 .04 005 02-SEP-19

6 rows selected.

SQL update command
The SQL insert command is used, as you know, for adding a new row to a table. What if you want to
change something, however, about a row that is already in a table? Then you can use the SQL update
command to do so.

Here is a first, simple example of the basic update command syntax:

update tbl_name
set attrib1 = expression1
where bool_condition;

The semantics, or meaning, of this is that, in every row of tbl_name for which bool_condition is
true, attrib1 will be changed to the value of expression1. (So, note that more than one row might
be changed as the result of a single update command.)

Also, it is important to realize that expression1 and bool_condition can be as complex as you'd
like -- indeed, the where clause here can be every bit as complex as a select statement's where clause,
with nested sub-selects, various operators, etc.

Here are a few examples of update commands:

update parts
set price = 66.66
where part_num = '10604';

Only one row is changed by this command, since only one row in parts has part_num of '10604'.
And now the price for that particular row has been changed to 66.66 -- that is, now the query:
select *
from parts
where part_num = '10604';

...has the results:

PART_ PART_NAME QUANTITY_ON_HAND PRICE LEV LAST_INSP
----- ------------------------- ---------------- ---------- --- ---------
10604 tire 287 66.66 333 06-SEP-18

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 15
Sharon Tuttle - last modified: 2021-09-09

...has the results:

PART_ PART_NAME QUANTITY_ON_HAND PRICE LEV LAST_INSP
----- ------------------------- ---------------- ---------- --- ---------
10601 3/8 in lug nut 1000 .02 002 09-SEP-17
10603 hexagonal wrench 13 9.99 003 05-SEP-18
10604 tire 287 39.99 333 06-SEP-18
10605 hammer 30 9.99 003 01-SEP-18
10606 3/8 in bolt 5000 .03 005 04-SEP-19
10607 7/8 in bolt 2655 .04 005 02-SEP-19

6 rows selected.

SQL update command
The SQL insert command is used, as you know, for adding a new row to a table. What if you want to
change something, however, about a row that is already in a table? Then you can use the SQL update
command to do so.

Here is a first, simple example of the basic update command syntax:

update tbl_name
set attrib1 = expression1
where bool_condition;

The semantics, or meaning, of this is that, in every row of tbl_name for which bool_condition is
true, attrib1 will be changed to the value of expression1. (So, note that more than one row might
be changed as the result of a single update command.)

Also, it is important to realize that expression1 and bool_condition can be as complex as you'd
like -- indeed, the where clause here can be every bit as complex as a select statement's where clause,
with nested sub-selects, various operators, etc.

Here are a few examples of update commands:

update parts
set price = 66.66
where part_num = '10604';

Only one row is changed by this command, since only one row in parts has part_num of '10604'.
And now the price for that particular row has been changed to 66.66 -- that is, now the query:
select *
from parts
where part_num = '10604';

...has the results:

PART_ PART_NAME QUANTITY_ON_HAND PRICE LEV LAST_INSP
----- ------------------------- ---------------- ---------- --- ---------
10604 tire 287 66.66 333 06-SEP-18

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 16
Sharon Tuttle - last modified: 2021-09-09

Given the rows we just inserted into parts, the following will end up updating two rows:

update parts
set quantity_on_hand = 0
where price = 9.99;

...because both the hexagonal wrench and the hammer had price of 9.99 when this command was run.
And both of these rows now have a quantity_on_hand of 0, as can be seen using the query:

select part_name, quantity_on_hand
from parts;

...whose results are:

PART_NAME QUANTITY_ON_HAND
------------------------- ----------------
3/8 in lug nut 1000
hexagonal wrench 0
tire 287
hammer 0
3/8 in bolt 5000
7/8 in bolt 2655

6 rows selected.

What do you think happens if you have no where clause in an update command? Well, consider what
happens in the select statement in such a case: all rows of the specified table (or of the specified
Cartesian product!) are selected. Likewise, if you leave off the where clause in an update statement,
then EVERY row in the specified table will have that modification made to it.

So, the following will change the last_inspected attribute of ALL rows currently in the parts table
to contain the current date (since sysdate is an Oracle date function that "returns the current date and
time set for the operating system on which the database resides" [Oracle Database SQL Reference,
http://download.oracle.com/docs/cd/B19306_01/server.102/b14200/functions172.htm])

update parts
set last_inspected = sysdate;

...updating all six rows currently in the parts table to now have the same last_inspected value, the
date that this command is run.

For example, after running the above on 2019-10-31, the query:

select part_name, last_inspected
from parts;

...has the results:

PART_NAME LAST_INSP
------------------------- ---------

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 16
Sharon Tuttle - last modified: 2021-09-09

Given the rows we just inserted into parts, the following will end up updating two rows:

update parts
set quantity_on_hand = 0
where price = 9.99;

...because both the hexagonal wrench and the hammer had price of 9.99 when this command was run.
And both of these rows now have a quantity_on_hand of 0, as can be seen using the query:

select part_name, quantity_on_hand
from parts;

...whose results are:

PART_NAME QUANTITY_ON_HAND
------------------------- ----------------
3/8 in lug nut 1000
hexagonal wrench 0
tire 287
hammer 0
3/8 in bolt 5000
7/8 in bolt 2655

6 rows selected.

What do you think happens if you have no where clause in an update command? Well, consider what
happens in the select statement in such a case: all rows of the specified table (or of the specified
Cartesian product!) are selected. Likewise, if you leave off the where clause in an update statement,
then EVERY row in the specified table will have that modification made to it.

So, the following will change the last_inspected attribute of ALL rows currently in the parts table
to contain the current date (since sysdate is an Oracle date function that "returns the current date and
time set for the operating system on which the database resides" [Oracle Database SQL Reference,
http://download.oracle.com/docs/cd/B19306_01/server.102/b14200/functions172.htm])

update parts
set last_inspected = sysdate;

...updating all six rows currently in the parts table to now have the same last_inspected value, the
date that this command is run.

For example, after running the above on 2019-10-31, the query:

select part_name, last_inspected
from parts;

...has the results:

PART_NAME LAST_INSP
------------------------- ---------

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 17
Sharon Tuttle - last modified: 2021-09-09

3/8 in lug nut 31-OCT-19
hexagonal wrench 31-OCT-19
tire 31-OCT-19
hammer 31-OCT-19
3/8 in bolt 31-OCT-19
7/8 in bolt 31-OCT-19

6 rows selected.

Here is an example giving at least a suggestion that the set and where clauses can get more interesting:

update parts
set last_inspected = (select max(hiredate)
 from empl)
where quantity_on_hand < (select quantity_on_hand
 from parts
 where part_num = '10607');

...which actually does update four of parts' rows to now have a last_inspected value of September
8, 2019; the query:

select part_name, last_inspected
from parts;

...now has the results:

PART_NAME LAST_INSP
------------------------- ---------
3/8 in lug nut 08-SEP-19
hexagonal wrench 08-SEP-19
tire 08-SEP-19
hammer 08-SEP-19
3/8 in bolt 31-OCT-19
7/8 in bolt 31-OCT-19

6 rows selected.

SQL delete command
The SQL update command can change the values of the attributes within a row, but it cannot get rid of
an entire row. The SQL drop table command can get rid of an entire table, including all of its rows,
but it cannot get rid of its rows and keep the table.

No; if you want to get rid of one or more rows (but keep the table), then you need the SQL delete
command.

Here is a first, simple example of the basic delete command syntax:

delete from tbl_name
where bool_condition;

The semantics, or meaning, of this is that, for every row of tbl_name for which bool_condition is

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 17
Sharon Tuttle - last modified: 2021-09-09

3/8 in lug nut 31-OCT-19
hexagonal wrench 31-OCT-19
tire 31-OCT-19
hammer 31-OCT-19
3/8 in bolt 31-OCT-19
7/8 in bolt 31-OCT-19

6 rows selected.

Here is an example giving at least a suggestion that the set and where clauses can get more interesting:

update parts
set last_inspected = (select max(hiredate)
 from empl)
where quantity_on_hand < (select quantity_on_hand
 from parts
 where part_num = '10607');

...which actually does update four of parts' rows to now have a last_inspected value of September
8, 2019; the query:

select part_name, last_inspected
from parts;

...now has the results:

PART_NAME LAST_INSP
------------------------- ---------
3/8 in lug nut 08-SEP-19
hexagonal wrench 08-SEP-19
tire 08-SEP-19
hammer 08-SEP-19
3/8 in bolt 31-OCT-19
7/8 in bolt 31-OCT-19

6 rows selected.

SQL delete command
The SQL update command can change the values of the attributes within a row, but it cannot get rid of
an entire row. The SQL drop table command can get rid of an entire table, including all of its rows,
but it cannot get rid of its rows and keep the table.

No; if you want to get rid of one or more rows (but keep the table), then you need the SQL delete
command.

Here is a first, simple example of the basic delete command syntax:

delete from tbl_name
where bool_condition;

The semantics, or meaning, of this is that, for every row of tbl_name for which bool_condition is

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 18
Sharon Tuttle - last modified: 2021-09-09

true, that row will be removed from the table. (So, note that more than one row might be deleted as the
result of a single delete command.)

And, as for update, it is important to realize that the delete command's bool_condition can be as
complex as you'd like -- that the delete command's where clause, too, can be every bit as complex as a
select statement's where clause, with nested sub-selects, various operators, etc.

Here are a few examples of delete commands:

delete from parts
where price = 66.66;

This deletes one row from parts, the one for part tire, which happens to be the only one right now
that had a price of 66.66. The query:

select part_name, price, level_code
from parts;

...now has the results:

PART_NAME PRICE LEV
------------------------- ---------- ---
3/8 in lug nut .02 002
hexagonal wrench 9.99 003
hammer 9.99 003
3/8 in bolt .03 005
7/8 in bolt .04 005

And, consider:

delete from parts
where level_code = '005';

Two rows happened to have a level_code of '005', for parts 3/8 in bolt and 7/8 in bolt -- if you
now re-run the query:

select part_name, price, level_code
from parts;

you'll see that both are indeed gone after this statement and this query have been executed:

PART_NAME PRICE LEV
------------------------- ---------- ---
3/8 in lug nut .02 002
hexagonal wrench 9.99 003
hammer 9.99 003

And, as for update, if you omit the where clause in a delete statement, you will delete ALL of the
specified table's rows -- the table will still exist, but it will have no rows (it will have 0 rows). So,
consider:

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 18
Sharon Tuttle - last modified: 2021-09-09

true, that row will be removed from the table. (So, note that more than one row might be deleted as the
result of a single delete command.)

And, as for update, it is important to realize that the delete command's bool_condition can be as
complex as you'd like -- that the delete command's where clause, too, can be every bit as complex as a
select statement's where clause, with nested sub-selects, various operators, etc.

Here are a few examples of delete commands:

delete from parts
where price = 66.66;

This deletes one row from parts, the one for part tire, which happens to be the only one right now
that had a price of 66.66. The query:

select part_name, price, level_code
from parts;

...now has the results:

PART_NAME PRICE LEV
------------------------- ---------- ---
3/8 in lug nut .02 002
hexagonal wrench 9.99 003
hammer 9.99 003
3/8 in bolt .03 005
7/8 in bolt .04 005

And, consider:

delete from parts
where level_code = '005';

Two rows happened to have a level_code of '005', for parts 3/8 in bolt and 7/8 in bolt -- if you
now re-run the query:

select part_name, price, level_code
from parts;

you'll see that both are indeed gone after this statement and this query have been executed:

PART_NAME PRICE LEV
------------------------- ---------- ---
3/8 in lug nut .02 002
hexagonal wrench 9.99 003
hammer 9.99 003

And, as for update, if you omit the where clause in a delete statement, you will delete ALL of the
specified table's rows -- the table will still exist, but it will have no rows (it will have 0 rows). So,
consider:

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 19
Sharon Tuttle - last modified: 2021-09-09

delete from parts;

After the above command, the parts table will be empty -- the query:

select *
from parts;

...now has the results:

no rows selected

Putting back some rows for another delete example:

insert into parts
values
('10601', '3/8 in lug nut', 1000, 0.02, '002', '09-SEP-2017');

insert into parts
values
('10603', 'hexagonal wrench', 13, 9.99, '003', '05-SEP-2018');

insert into parts
values
('10604', 'tire', 287, 39.99, '333', '06-SEP-2018');

insert into parts
values
('10605', 'hammer', 30, 9.99, '003', '01-SEP-2018');

insert into parts
values
('10606', '3/8 in bolt', 5000, 0.03, '005', '04-SEP-2019');

insert into parts
values
('10607', '7/8 in bolt', 2655, 0.04, '005', '02-SEP-2019');

...so that, now:

select *
from parts;

...has the results:

PART_ PART_NAME QUANTITY_ON_HAND PRICE LEV LAST_INSP
----- ------------------------- ---------------- ---------- --- ---------
10601 3/8 in lug nut 1000 .02 002 09-SEP-17
10603 hexagonal wrench 13 9.99 003 05-SEP-18
10604 tire 287 39.99 333 06-SEP-18
10605 hammer 30 9.99 003 01-SEP-18
10606 3/8 in bolt 5000 .03 005 04-SEP-19
10607 7/8 in bolt 2655 .04 005 02-SEP-19

6 rows selected.

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 19
Sharon Tuttle - last modified: 2021-09-09

delete from parts;

After the above command, the parts table will be empty -- the query:

select *
from parts;

...now has the results:

no rows selected

Putting back some rows for another delete example:

insert into parts
values
('10601', '3/8 in lug nut', 1000, 0.02, '002', '09-SEP-2017');

insert into parts
values
('10603', 'hexagonal wrench', 13, 9.99, '003', '05-SEP-2018');

insert into parts
values
('10604', 'tire', 287, 39.99, '333', '06-SEP-2018');

insert into parts
values
('10605', 'hammer', 30, 9.99, '003', '01-SEP-2018');

insert into parts
values
('10606', '3/8 in bolt', 5000, 0.03, '005', '04-SEP-2019');

insert into parts
values
('10607', '7/8 in bolt', 2655, 0.04, '005', '02-SEP-2019');

...so that, now:

select *
from parts;

...has the results:

PART_ PART_NAME QUANTITY_ON_HAND PRICE LEV LAST_INSP
----- ------------------------- ---------------- ---------- --- ---------
10601 3/8 in lug nut 1000 .02 002 09-SEP-17
10603 hexagonal wrench 13 9.99 003 05-SEP-18
10604 tire 287 39.99 333 06-SEP-18
10605 hammer 30 9.99 003 01-SEP-18
10606 3/8 in bolt 5000 .03 005 04-SEP-19
10607 7/8 in bolt 2655 .04 005 02-SEP-19

6 rows selected.

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 20
Sharon Tuttle - last modified: 2021-09-09

...here's a final example with a more interesting where clause:

delete from parts
where quantity_on_hand > (select avg(quantity_on_hand)
 from parts);

Now two of those 6 new rows are gone again; the query:

select *
from parts;

...now has the results:

PART_ PART_NAME QUANTITY_ON_HAND PRICE LEV LAST_INSP
----- ------------------------- ---------------- ---------- --- ---------
10601 3/8 in lug nut 1000 .02 002 09-SEP-17
10603 hexagonal wrench 13 9.99 003 05-SEP-18
10604 tire 287 39.99 333 06-SEP-18
10605 hammer 30 9.99 003 01-SEP-18

brief aside: some demonstrations of Oracle DBMS support for
referential integrity

Since we have this lovely parts table available, let's create a part_orders table, which has a foreign
key referencing the parts table, so we can demonstrate some of Oracle's support for referential
integrity.

drop table part_orders cascade constraints;

create table part_orders
(order_num char(6),
 cust_num char(8),
 part_num char(5),
 order_date date,
 quantity integer,
 order_code char(1),
 primary key (order_num),
 foreign key (part_num) references parts
);

So, because part_orders has a foreign key referencing parts, then since Oracle does support
referential integrity, no row can be inserted into the child table part_orders unless there is a
corresponding row in parent table parts with the same part_num as the proposed child part_orders
row. Likewise, you will now not be able to delete a row from the parent table parts if there is a child
table in part_orders whose part_num is the same as parent row to be deleted.

The following insertion into part_orders will work, since it is a part order for a currently-existing
part:

insert into part_orders

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 20
Sharon Tuttle - last modified: 2021-09-09

...here's a final example with a more interesting where clause:

delete from parts
where quantity_on_hand > (select avg(quantity_on_hand)
 from parts);

Now two of those 6 new rows are gone again; the query:

select *
from parts;

...now has the results:

PART_ PART_NAME QUANTITY_ON_HAND PRICE LEV LAST_INSP
----- ------------------------- ---------------- ---------- --- ---------
10601 3/8 in lug nut 1000 .02 002 09-SEP-17
10603 hexagonal wrench 13 9.99 003 05-SEP-18
10604 tire 287 39.99 333 06-SEP-18
10605 hammer 30 9.99 003 01-SEP-18

brief aside: some demonstrations of Oracle DBMS support for
referential integrity

Since we have this lovely parts table available, let's create a part_orders table, which has a foreign
key referencing the parts table, so we can demonstrate some of Oracle's support for referential
integrity.

drop table part_orders cascade constraints;

create table part_orders
(order_num char(6),
 cust_num char(8),
 part_num char(5),
 order_date date,
 quantity integer,
 order_code char(1),
 primary key (order_num),
 foreign key (part_num) references parts
);

So, because part_orders has a foreign key referencing parts, then since Oracle does support
referential integrity, no row can be inserted into the child table part_orders unless there is a
corresponding row in parent table parts with the same part_num as the proposed child part_orders
row. Likewise, you will now not be able to delete a row from the parent table parts if there is a child
table in part_orders whose part_num is the same as parent row to be deleted.

The following insertion into part_orders will work, since it is a part order for a currently-existing
part:

insert into part_orders

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 21
Sharon Tuttle - last modified: 2021-09-09

values
('111111', '11111111', '10601', '01-Feb-2019', 6, 'B');

The following insertion into part_orders will NOT work, since it is for a part whose number is NOT
in the parts table:

insert into part_orders
values
('111112', '11111111', '10106', '01-Feb-2019', 6, 'B');

Here is the Oracle error message:

insert into part_orders
*
ERROR at line 1:
ORA-02291: integrity constraint (ST10.SYS_C0084605) violated - parent key not
found

Likewise, the following deletion will fail, since it is attempting to delete a part for which there is a
part_orders row:

delete from parts
where part_num = '10601';

...and here is the Oracle error message:

delete from parts
*
ERROR at line 1:
ORA-02292: integrity constraint (ST10.SYS_C0084605) violated - child record
found

Here's a further example of referential integrity support: you cannot update a part_orders row to have
a non-existent part, either:

update part_orders
set part_num = '13'
where part_num = '10601';

...resulting in the Oracle error message:

update part_orders
*
ERROR at line 1:
ORA-02291: integrity constraint (ST10.SYS_C0084605) violated - parent key not
found

...nor can you change a part_num for a part if there's a part_order involving that part_num:

update parts
set part_num = '13'
where part_num = '10601';

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 21
Sharon Tuttle - last modified: 2021-09-09

values
('111111', '11111111', '10601', '01-Feb-2019', 6, 'B');

The following insertion into part_orders will NOT work, since it is for a part whose number is NOT
in the parts table:

insert into part_orders
values
('111112', '11111111', '10106', '01-Feb-2019', 6, 'B');

Here is the Oracle error message:

insert into part_orders
*
ERROR at line 1:
ORA-02291: integrity constraint (ST10.SYS_C0084605) violated - parent key not
found

Likewise, the following deletion will fail, since it is attempting to delete a part for which there is a
part_orders row:

delete from parts
where part_num = '10601';

...and here is the Oracle error message:

delete from parts
*
ERROR at line 1:
ORA-02292: integrity constraint (ST10.SYS_C0084605) violated - child record
found

Here's a further example of referential integrity support: you cannot update a part_orders row to have
a non-existent part, either:

update part_orders
set part_num = '13'
where part_num = '10601';

...resulting in the Oracle error message:

update part_orders
*
ERROR at line 1:
ORA-02291: integrity constraint (ST10.SYS_C0084605) violated - parent key not
found

...nor can you change a part_num for a part if there's a part_order involving that part_num:

update parts
set part_num = '13'
where part_num = '10601';

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 22
Sharon Tuttle - last modified: 2021-09-09

...resulting in the Oracle error message:

update parts
*
ERROR at line 1:
ORA-02292: integrity constraint (ST10.SYS_C0084605) violated - child record
found

YET ANOTHER brief aside: MORE demonstrations of Oracle
DBMS support for referential integrity

Oracle may not take domain integrity support as far as it might, but here are some additional means of
constraining/specifying attribute domains that it DOES support:

-- maxpoint integer not null, -- this column MUST have a value
-- quantity integer default 1, -- put 1 in if NO value is
-- -- inserted EXPLICITLY for this
-- -- column
-- car_color varchar2(10) check(car_color IN ('red', 'green', 'white')),
-- quiz_grade integer check(quiz_grade >= 0 AND quiz_grade <= 100),
-- quiz_grade integer check(quiz_grade between 0 and 100),

Let's use some of these in a new version of table part_orders:

drop table part_orders cascade constraints;

create table part_orders
(order_num char(6),
 cust_num char(8) not null,
 part_num char(5) not null,
 order_date date,
 quantity integer default 1 not null,
 order_code char(1) check(order_code in ('B',
 'I',
 'G')),
 delivery_code char(1) check(delivery_code in
 ('U', 'F', 'P')) not null,
 primary key (order_num),
 foreign key (part_num) references parts
);

Now for some insertions:

insert into part_orders
values
('111111', '11111111', '10601', '01-Feb-2019', 6, 'B', 'U');

Even though order_code has a check clause, it can still be NULL:

insert into part_orders(order_num, cust_num, part_num, order_date, quantity,
 delivery_code)
values
('333333', '33333333', '10601', '01-Feb-2019', 8, 'F');

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 22
Sharon Tuttle - last modified: 2021-09-09

...resulting in the Oracle error message:

update parts
*
ERROR at line 1:
ORA-02292: integrity constraint (ST10.SYS_C0084605) violated - child record
found

YET ANOTHER brief aside: MORE demonstrations of Oracle
DBMS support for referential integrity

Oracle may not take domain integrity support as far as it might, but here are some additional means of
constraining/specifying attribute domains that it DOES support:

-- maxpoint integer not null, -- this column MUST have a value
-- quantity integer default 1, -- put 1 in if NO value is
-- -- inserted EXPLICITLY for this
-- -- column
-- car_color varchar2(10) check(car_color IN ('red', 'green', 'white')),
-- quiz_grade integer check(quiz_grade >= 0 AND quiz_grade <= 100),
-- quiz_grade integer check(quiz_grade between 0 and 100),

Let's use some of these in a new version of table part_orders:

drop table part_orders cascade constraints;

create table part_orders
(order_num char(6),
 cust_num char(8) not null,
 part_num char(5) not null,
 order_date date,
 quantity integer default 1 not null,
 order_code char(1) check(order_code in ('B',
 'I',
 'G')),
 delivery_code char(1) check(delivery_code in
 ('U', 'F', 'P')) not null,
 primary key (order_num),
 foreign key (part_num) references parts
);

Now for some insertions:

insert into part_orders
values
('111111', '11111111', '10601', '01-Feb-2019', 6, 'B', 'U');

Even though order_code has a check clause, it can still be NULL:

insert into part_orders(order_num, cust_num, part_num, order_date, quantity,
 delivery_code)
values
('333333', '33333333', '10601', '01-Feb-2019', 8, 'F');

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 23
Sharon Tuttle - last modified: 2021-09-09

insert into part_orders(order_num, part_num, cust_num, order_date, quantity,
 delivery_code)
values
('222222', '10605', '22222222', '1-Jan-19', 4, 'P');

Here's a demonstration that the default clause works for the quantity attribute if NO value is
explicitly specified for that attribute:

insert into part_orders(order_num, part_num, cust_num, order_date, delivery_code)
values
('444444', '10601', '22222222', '1-Feb-19', 'U');

So, at this point,

select *
from part_orders;

...has the results (noting that order 444444 does indeed have default quantity of 1):

ORDER_ CUST_NUM PART_ ORDER_DAT QUANTITY O D
------ -------- ----- --------- ---------- - -
111111 11111111 10601 01-FEB-19 6 B U
333333 33333333 10601 01-FEB-19 8 F
222222 22222222 10605 01-JAN-19 4 P
444444 22222222 10601 01-FEB-19 1 U

But, be careful! EXPLICIT insertion of null overrides the default for an attribute; so this insertion
FAILS because it ends up violating the not null constraint that quantity also has:

insert into part_orders
values
('555555', '44444444', '10601', '3-Mar-19', NULL, 'G', 'U');

...resulting in the error message:

('555555', '44444444', '10601', '3-Mar-19', NULL, 'G', 'U')
 *
ERROR at line 3:
ORA-01400: cannot insert NULL into ("ST10"."PART_ORDERS"."QUANTITY")

Here are some more "bad" insertions that won't be allowed:

The order_code HAS to be 'B', 'I', or 'G':

insert into part_orders
values
('666666', '44444444', '10601', '25-Dec-18', 5, 'b', 'P');

...with the complaint:

insert into part_orders

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 23
Sharon Tuttle - last modified: 2021-09-09

insert into part_orders(order_num, part_num, cust_num, order_date, quantity,
 delivery_code)
values
('222222', '10605', '22222222', '1-Jan-19', 4, 'P');

Here's a demonstration that the default clause works for the quantity attribute if NO value is
explicitly specified for that attribute:

insert into part_orders(order_num, part_num, cust_num, order_date, delivery_code)
values
('444444', '10601', '22222222', '1-Feb-19', 'U');

So, at this point,

select *
from part_orders;

...has the results (noting that order 444444 does indeed have default quantity of 1):

ORDER_ CUST_NUM PART_ ORDER_DAT QUANTITY O D
------ -------- ----- --------- ---------- - -
111111 11111111 10601 01-FEB-19 6 B U
333333 33333333 10601 01-FEB-19 8 F
222222 22222222 10605 01-JAN-19 4 P
444444 22222222 10601 01-FEB-19 1 U

But, be careful! EXPLICIT insertion of null overrides the default for an attribute; so this insertion
FAILS because it ends up violating the not null constraint that quantity also has:

insert into part_orders
values
('555555', '44444444', '10601', '3-Mar-19', NULL, 'G', 'U');

...resulting in the error message:

('555555', '44444444', '10601', '3-Mar-19', NULL, 'G', 'U')
 *
ERROR at line 3:
ORA-01400: cannot insert NULL into ("ST10"."PART_ORDERS"."QUANTITY")

Here are some more "bad" insertions that won't be allowed:

The order_code HAS to be 'B', 'I', or 'G':

insert into part_orders
values
('666666', '44444444', '10601', '25-Dec-18', 5, 'b', 'P');

...with the complaint:

insert into part_orders

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 24
Sharon Tuttle - last modified: 2021-09-09

*
ERROR at line 1:
ORA-02290: check constraint (ST10.SYS_C0084610) violated

The cust_num CANNOT be null, because it was specified as not null:

insert into part_orders(order_num, part_num, delivery_code)
values
('777777', '10601', 'U');

...with the complaint:

insert into part_orders(order_num, part_num, delivery_code)
*
ERROR at line 1:
ORA-01400: cannot insert NULL into ("ST10"."PART_ORDERS"."CUST_NUM")

a command you SHOULDN'T need often: the alter command
Note that changing a table's contents is different from changing a table's structure; the delete
command deletes a table's rows, but the table (even if it is empty) remains. To get rid of a whole table
structure, you use the drop table command.

Likewise, update lets you change the contents of an existing row or rows, but if you want to change an
existing table's structure, you must use a different command: the alter command.

You should not regularly have to alter tables after the fact, if they are designed well. But, every so
often, it is helpful to be able to do so. Here are a few examples, just in case.

For example, this would add a new attribute to the parts table, a supplier attribute:

alter table parts
add
(supplier varchar2(20)
);

If you'd like to see the new attribute in parts' structure, try the SQL*Plus describe command:

describe parts

...which now has the results:

 Name Null? Type
 --- -------- ----------------------------
 PART_NUM NOT NULL CHAR(5)
 PART_NAME VARCHAR2(25)
 QUANTITY_ON_HAND NUMBER(38)
 PRICE NUMBER(6,2)
 LEVEL_CODE CHAR(3)
 LAST_INSPECTED DATE
 SUPPLIER VARCHAR2(20)

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 24
Sharon Tuttle - last modified: 2021-09-09

*
ERROR at line 1:
ORA-02290: check constraint (ST10.SYS_C0084610) violated

The cust_num CANNOT be null, because it was specified as not null:

insert into part_orders(order_num, part_num, delivery_code)
values
('777777', '10601', 'U');

...with the complaint:

insert into part_orders(order_num, part_num, delivery_code)
*
ERROR at line 1:
ORA-01400: cannot insert NULL into ("ST10"."PART_ORDERS"."CUST_NUM")

a command you SHOULDN'T need often: the alter command
Note that changing a table's contents is different from changing a table's structure; the delete
command deletes a table's rows, but the table (even if it is empty) remains. To get rid of a whole table
structure, you use the drop table command.

Likewise, update lets you change the contents of an existing row or rows, but if you want to change an
existing table's structure, you must use a different command: the alter command.

You should not regularly have to alter tables after the fact, if they are designed well. But, every so
often, it is helpful to be able to do so. Here are a few examples, just in case.

For example, this would add a new attribute to the parts table, a supplier attribute:

alter table parts
add
(supplier varchar2(20)
);

If you'd like to see the new attribute in parts' structure, try the SQL*Plus describe command:

describe parts

...which now has the results:

 Name Null? Type
 --- -------- ----------------------------
 PART_NUM NOT NULL CHAR(5)
 PART_NAME VARCHAR2(25)
 QUANTITY_ON_HAND NUMBER(38)
 PRICE NUMBER(6,2)
 LEVEL_CODE CHAR(3)
 LAST_INSPECTED DATE
 SUPPLIER VARCHAR2(20)

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 25
Sharon Tuttle - last modified: 2021-09-09

And doing:

select part_num, part_name, supplier
from parts;

...will show that the value for supplier for all of the existing rows is null:

PART_ PART_NAME SUPPLIER
----- ------------------------- --------------------
10601 3/8 in lug nut
10603 hexagonal wrench
10604 tire
10605 hammer

You can, of course, use update to now modify the supplier attribute for these existing rows as
desired:

update parts
set supplier = 'Acme'
where part_num in ('10603', '10604');

...and now, the query:

select part_num, part_name, supplier
from parts;

...has the results:

PART_ PART_NAME SUPPLIER
----- ------------------------- --------------------
10601 3/8 in lug nut
10603 hexagonal wrench Acme
10604 tire Acme
10605 hammer

Note that Oracle may restrict you from making some alterations; for example, you can make an
existing attribute "bigger", but you may not be able to make it "smaller" if any existing rows would not
"fit" in the new "smaller" attribute.

Introduction to Sequences
A sequence is an Oracle database object provided for convenience: it generates, literally, a sequence of
values. This can be useful for generating sound, non-duplicating primary keys for new rows over time.

Here are some tables to help us in playing with sequences:

drop table painter cascade constraints;

create table painter
(ptr_num integer,
 ptr_lname varchar2(30) not null,
 ptr_fname varchar2(15),

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 25
Sharon Tuttle - last modified: 2021-09-09

And doing:

select part_num, part_name, supplier
from parts;

...will show that the value for supplier for all of the existing rows is null:

PART_ PART_NAME SUPPLIER
----- ------------------------- --------------------
10601 3/8 in lug nut
10603 hexagonal wrench
10604 tire
10605 hammer

You can, of course, use update to now modify the supplier attribute for these existing rows as
desired:

update parts
set supplier = 'Acme'
where part_num in ('10603', '10604');

...and now, the query:

select part_num, part_name, supplier
from parts;

...has the results:

PART_ PART_NAME SUPPLIER
----- ------------------------- --------------------
10601 3/8 in lug nut
10603 hexagonal wrench Acme
10604 tire Acme
10605 hammer

Note that Oracle may restrict you from making some alterations; for example, you can make an
existing attribute "bigger", but you may not be able to make it "smaller" if any existing rows would not
"fit" in the new "smaller" attribute.

Introduction to Sequences
A sequence is an Oracle database object provided for convenience: it generates, literally, a sequence of
values. This can be useful for generating sound, non-duplicating primary keys for new rows over time.

Here are some tables to help us in playing with sequences:

drop table painter cascade constraints;

create table painter
(ptr_num integer,
 ptr_lname varchar2(30) not null,
 ptr_fname varchar2(15),

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 26
Sharon Tuttle - last modified: 2021-09-09

 primary key (ptr_num)
);

drop table painting cascade constraints;

create table painting
(ptg_id integer,
 ptg_title varchar2(30),
 ptr_num integer,
 primary key (ptg_id),
 foreign key (ptr_num) references painter
);

Let's say that I decide to create a sequence to help me to set good primary keys for the painter table
over time. Then:

drop sequence painter_seq;

-- sequence painter_seq will start at 100, the next will be 102,
-- the next will be 104, etc.
-- (the increment and start clauses are optional --
-- the sequence increments by 1 if not specified,
-- and I THINK it starts at 1 if not specified...)

create sequence painter_seq
increment by 2
start with 100;

For a sequence object, adding .nextval after the name of the sequence gets you the next value of that
sequence. So, here are some insertions into painter that make use of this:

insert into painter
values
(painter_seq.nextval, 'Van Gogh', 'Vincent');

insert into painter
values
(painter_seq.nextval, 'Monet', 'Claude');

insert into painter
values
(painter_seq.nextval, 'Da Vinci', 'Leonardo');

And if I look at the contents of painter now:

select *
from painter;

...I will see:

 PTR_NUM PTR_LNAME PTR_FNAME
---------- ------------------------------ ---------------
 102 Van Gogh Vincent
 104 Monet Claude

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 26
Sharon Tuttle - last modified: 2021-09-09

 primary key (ptr_num)
);

drop table painting cascade constraints;

create table painting
(ptg_id integer,
 ptg_title varchar2(30),
 ptr_num integer,
 primary key (ptg_id),
 foreign key (ptr_num) references painter
);

Let's say that I decide to create a sequence to help me to set good primary keys for the painter table
over time. Then:

drop sequence painter_seq;

-- sequence painter_seq will start at 100, the next will be 102,
-- the next will be 104, etc.
-- (the increment and start clauses are optional --
-- the sequence increments by 1 if not specified,
-- and I THINK it starts at 1 if not specified...)

create sequence painter_seq
increment by 2
start with 100;

For a sequence object, adding .nextval after the name of the sequence gets you the next value of that
sequence. So, here are some insertions into painter that make use of this:

insert into painter
values
(painter_seq.nextval, 'Van Gogh', 'Vincent');

insert into painter
values
(painter_seq.nextval, 'Monet', 'Claude');

insert into painter
values
(painter_seq.nextval, 'Da Vinci', 'Leonardo');

And if I look at the contents of painter now:

select *
from painter;

...I will see:

 PTR_NUM PTR_LNAME PTR_FNAME
---------- ------------------------------ ---------------
 102 Van Gogh Vincent
 104 Monet Claude

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 27
Sharon Tuttle - last modified: 2021-09-09

 106 Da Vinci Leonardo

If I use .currval after the name of a sequence, it should give you the sequence's CURRENT value. If I
know that a painting I'm adding is by the "latest" painter added, then I can do something like this:

insert into painting
values
(1001, 'Mona Lisa', painter_seq.currval);

select *
from painting;

...and this would result in:

 PTG_ID PTG_TITLE PTR_NUM
---------- ------------------------------ ----------
 1001 Mona Lisa 106

I've had little luck using sequences in where clauses in queries; this fails, for example:

select *
from painter
where ptr_num = painter_seq.currval;

...with the error message:

where ptr_num = painter_seq.currval
 *
ERROR at line 3:
ORA-02287: sequence number not allowed here

But if you just want to see the current value of a sequence, you can project it -- dual is a built-in Oracle
"dummy" table with 1 row and 1 column that is useful for such a query:

select painter_seq.currval
from dual;

...resulting in:

 CURRVAL

 106

Now, even though sequences are typically used to generate primary keys, they don't HAVE to be.
Here's a silly example demonstrating this:

insert into parts
values
('10614', 'stuff' || painter_seq.currval,
 painter_seq.currval, .13, '005', sysdate, 'Harry');

...and running the above on 2019-11-21, and then running the query:

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 27
Sharon Tuttle - last modified: 2021-09-09

 106 Da Vinci Leonardo

If I use .currval after the name of a sequence, it should give you the sequence's CURRENT value. If I
know that a painting I'm adding is by the "latest" painter added, then I can do something like this:

insert into painting
values
(1001, 'Mona Lisa', painter_seq.currval);

select *
from painting;

...and this would result in:

 PTG_ID PTG_TITLE PTR_NUM
---------- ------------------------------ ----------
 1001 Mona Lisa 106

I've had little luck using sequences in where clauses in queries; this fails, for example:

select *
from painter
where ptr_num = painter_seq.currval;

...with the error message:

where ptr_num = painter_seq.currval
 *
ERROR at line 3:
ORA-02287: sequence number not allowed here

But if you just want to see the current value of a sequence, you can project it -- dual is a built-in Oracle
"dummy" table with 1 row and 1 column that is useful for such a query:

select painter_seq.currval
from dual;

...resulting in:

 CURRVAL

 106

Now, even though sequences are typically used to generate primary keys, they don't HAVE to be.
Here's a silly example demonstrating this:

insert into parts
values
('10614', 'stuff' || painter_seq.currval,
 painter_seq.currval, .13, '005', sysdate, 'Harry');

...and running the above on 2019-11-21, and then running the query:

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 28
Sharon Tuttle - last modified: 2021-09-09

select *
from parts
where part_num = '10614';

...the results were (with some displayed blanks removed for readability):

PART_ PART_NAME QUANTITY_ON_HAND PRICE LEV LAST_INSP SUPPLIER
----- --------- ---------------- ----- --- --------- --------
10614 stuff106 106 .13 005 21-NOV-19 Harry

CS 325 - SQL Reading Packet 6: "Set-theoretic ops, modifying data, and sequences" p. 28
Sharon Tuttle - last modified: 2021-09-09

select *
from parts
where part_num = '10614';

...the results were (with some displayed blanks removed for readability):

PART_ PART_NAME QUANTITY_ON_HAND PRICE LEV LAST_INSP SUPPLIER
----- --------- ---------------- ----- --- --------- --------
10614 stuff106 106 .13 005 21-NOV-19 Harry

	Sources:
	more select operations: union, intersect, and minus
	The union operation
	The intersection operation
	The difference operation
	How to write queries using these set-theoretic operations in SQL
	UNION ALL
	Some additional notes on using set-theoretic operations
	note on the "full" select syntax
	further manipulations of database contents: beyond insert
	brief aside: some demonstrations of Oracle DBMS support for domain integrity
	SQL update command
	SQL delete command
	brief aside: some demonstrations of Oracle DBMS support for referential integrity
	YET ANOTHER brief aside: MORE demonstrations of Oracle DBMS support for referential integrity
	a command you SHOULDN'T need often: the alter command
	Introduction to Sequences

