
CS 112 - Fall 2022 - Homework 1 p. 1 of 3

CS 112 - Homework 1
Deadline
11:59 pm on Friday, September 2

Purpose
To make sure you have read over the course syllabus, to reinforce some of the CS 112 course style standards,
and to practice writing C++ programs using separate compilation, such that the resulting non-main function
could be used in more than one main function.

How to submit
You will complete Problems 1 and 2 on the course Canvas site (syllabus confirmation and reading questions,
and some short-answer questions related to some CS 112 course style standards).

For Problems 3 and 4, you will create several .cpp and .h files on the CS50 IDE, and then submit those to
the course Canvas site.

NOTE: While I list the separate files you need to submit for each problem below, I am going to set up
Canvas to also accept .zip files.

That is,

• you can submit each .cpp and .h file to Canvas as you submitted each of your files for the Week 1 Lab
Exercise.

• OR, if you prefer, you may compress your files to be submitted into a single .zip file and submit that
.zip file to Canvas.

Problem 1 - 20 points
Problem 1 is correctly answering the "HW 1 - Problem 1 - required syllabus confirmation and reading
questions" on the course Canvas site.

Problem 2 - 10 points
Problem 2 is correctly answering the "HW 1 - Problem 2 - Short-answer questions on CS 112 course style
basics" on the course Canvas site.

Problem 3 - 35 points
The purpose of this problem is to help you get used to separate compilation by starting with a C++ program
that consists of several functions contained in a single .cpp file, and "breaking" it up into a set of separately-
compilable .cpp and .h files.

Remember that you have:

• letter_match.h, letter_match.cpp, and letter_match_test.cpp posted with the Week 1 Lab
posted examples,

• a main function .cpp file template, a non-main function .cpp file template, and a non-main function .h
file template, posted on the home page of both the public course web site and the course Canvas site.

Consider the provided source code for a C++ program whose functions are all within the file
112prob3.cpp.

Within this file you will see source code for a function check_within and a function main.

CS 112 - Fall 2022 - Homework 1 p. 1 of 3

CS 112 - Homework 1
Deadline
11:59 pm on Friday, September 2

Purpose
To make sure you have read over the course syllabus, to reinforce some of the CS 112 course style standards,
and to practice writing C++ programs using separate compilation, such that the resulting non-main function
could be used in more than one main function.

How to submit
You will complete Problems 1 and 2 on the course Canvas site (syllabus confirmation and reading questions,
and some short-answer questions related to some CS 112 course style standards).

For Problems 3 and 4, you will create several .cpp and .h files on the CS50 IDE, and then submit those to
the course Canvas site.

NOTE: While I list the separate files you need to submit for each problem below, I am going to set up
Canvas to also accept .zip files.

That is,

• you can submit each .cpp and .h file to Canvas as you submitted each of your files for the Week 1 Lab
Exercise.

• OR, if you prefer, you may compress your files to be submitted into a single .zip file and submit that
.zip file to Canvas.

Problem 1 - 20 points
Problem 1 is correctly answering the "HW 1 - Problem 1 - required syllabus confirmation and reading
questions" on the course Canvas site.

Problem 2 - 10 points
Problem 2 is correctly answering the "HW 1 - Problem 2 - Short-answer questions on CS 112 course style
basics" on the course Canvas site.

Problem 3 - 35 points
The purpose of this problem is to help you get used to separate compilation by starting with a C++ program
that consists of several functions contained in a single .cpp file, and "breaking" it up into a set of separately-
compilable .cpp and .h files.

Remember that you have:

• letter_match.h, letter_match.cpp, and letter_match_test.cpp posted with the Week 1 Lab
posted examples,

• a main function .cpp file template, a non-main function .cpp file template, and a non-main function .h
file template, posted on the home page of both the public course web site and the course Canvas site.

Consider the provided source code for a C++ program whose functions are all within the file
112prob3.cpp.

Within this file you will see source code for a function check_within and a function main.

CS 112 - Fall 2022 - Homework 1 p. 2 of 3

"Break" this up into three files, check_within.h, check_within.cpp, and check_within_test.cpp,
such that you could now separately compile check_within.cpp and check_within_test.cpp,

and, if you copied check_within.h and check_within.cpp into another folder, you could call
check_within within any other function in that folder by simply including:
#include "check_within.h"

...within its #includes, and including check_within.cpp in its g++ command compiling the program
involved.

Your resulting files should be able to be successfully compiled using:
g++ check_within.cpp check_within_test.cpp -o check_within_test

...and the resulting program should be able to be successfully run using:

./check_within_test

Submit your resulting files check_within.h, check_within.cpp, and check_within_test.cpp.

(And, by the way: you might find function check_within to be useful when you are testing a function that
returns a double value, because == can be too "strong" a test when comparing two double-precision floating
point values for equality! Feel free to make use of it throughout the semester as you find it useful.)

Problem 4 - 35 points
The purpose of this problem is to give you practice writing a separately-compilable function from the start,
using the design recipe steps described during Week 1, which can be summarized as:

• Think about the data involved in the function.

• In the function's opening comment, give the function's signature (following CS 112 course style).

• In the function's opening comment, give the function's purpose statement (following CS 112 course style).

• Write the function header (followed by an empty body, for now)

• Back up in the function's opening comment, write at least two tests (and at least one test for each
"category" of data involved), written (whenever possible) as bool expressions that should be true if
specific calls of that function work as they should.

• Complete the function body

• Write a testing main function to print the results of actually running those tests.

• Compile the resulting program, see if the tests run.

To practice this, choose any ONE of the suggestions below for your function. (You are encouraged to try as
many of them as you like, but I will only grade one of them, in the interests of time.)

Problem 4 - choice 1: five_letter_str
REMINDER: The C++ string class has a method length, that expects nothing and returns the length of
the calling string.

Use the design recipe to design a separately-compilable function five_letter_str that expects a string,
and returns whether it is a string of 5 characters precisely. (This might be convenient, for example, in making
sure a user guess for a Wordle-style program is allowable...)

For example:
five_letter_str("moo") == false

CS 112 - Fall 2022 - Homework 1 p. 2 of 3

"Break" this up into three files, check_within.h, check_within.cpp, and check_within_test.cpp,
such that you could now separately compile check_within.cpp and check_within_test.cpp,

and, if you copied check_within.h and check_within.cpp into another folder, you could call
check_within within any other function in that folder by simply including:
#include "check_within.h"

...within its #includes, and including check_within.cpp in its g++ command compiling the program
involved.

Your resulting files should be able to be successfully compiled using:
g++ check_within.cpp check_within_test.cpp -o check_within_test

...and the resulting program should be able to be successfully run using:

./check_within_test

Submit your resulting files check_within.h, check_within.cpp, and check_within_test.cpp.

(And, by the way: you might find function check_within to be useful when you are testing a function that
returns a double value, because == can be too "strong" a test when comparing two double-precision floating
point values for equality! Feel free to make use of it throughout the semester as you find it useful.)

Problem 4 - 35 points
The purpose of this problem is to give you practice writing a separately-compilable function from the start,
using the design recipe steps described during Week 1, which can be summarized as:

• Think about the data involved in the function.

• In the function's opening comment, give the function's signature (following CS 112 course style).

• In the function's opening comment, give the function's purpose statement (following CS 112 course style).

• Write the function header (followed by an empty body, for now)

• Back up in the function's opening comment, write at least two tests (and at least one test for each
"category" of data involved), written (whenever possible) as bool expressions that should be true if
specific calls of that function work as they should.

• Complete the function body

• Write a testing main function to print the results of actually running those tests.

• Compile the resulting program, see if the tests run.

To practice this, choose any ONE of the suggestions below for your function. (You are encouraged to try as
many of them as you like, but I will only grade one of them, in the interests of time.)

Problem 4 - choice 1: five_letter_str
REMINDER: The C++ string class has a method length, that expects nothing and returns the length of
the calling string.

Use the design recipe to design a separately-compilable function five_letter_str that expects a string,
and returns whether it is a string of 5 characters precisely. (This might be convenient, for example, in making
sure a user guess for a Wordle-style program is allowable...)

For example:
five_letter_str("moo") == false

CS 112 - Fall 2022 - Homework 1 p. 3 of 3

Submit your resulting files five_letter_str.h, five_letter_str.cpp, and
five_letter_str_test.cpp (that contains a main function printing to the screen the result of running
function five_letter_str's tests).

Problem 4 - choice 2: pos_in_bounds
REMINDER: The C++ string class has a method length, that expects nothing and returns the length of
the calling string.

Use the design recipe to design a separately-compilable function pos_in_bounds that expects a string and
what should be a position within that string, and returns true if that position is indeed a position in that
string. (That is, verify that the position given is in [0, length of that string minus 1], since the position of the
first character in a string is 0.)

For example:
pos_in_bounds("angle", 2) == true // a string of length 5 has
 // positions 0, 1, 2, 3, 4

pos_in_bounds("who", 3) == false // a string of length 3 has
 // positions 0, 1, 2

Submit your resulting files pos_in_bounds.h, pos_in_bounds.cpp, and pos_in_bounds_test.cpp
(that contains a main function printing to the screen the result of running function pos_in_bounds's tests).

Problem 4 - choice 3: dist_btwn
Use the design recipe to design a separately-compilable function dist_btwn that expects the x and y
coordinates of two points in a 2-dimensional coordinate system, and returns the distance between those
points.

For example:
dist_btwn(0.0, 0.0, 3.0, 4.0) == 5.0

...since the distance between the point (0.0, 0.0) and the point (3.0, 4.0) would be 5.0.

Submit your resulting files dist_btwn.h, dist_btwn.cpp, and dist_btwn_test.cpp (that contains a
main function printing to the screen the result of running function dist_btwn's tests).

(Hints:

• It is perfectly reasonable to look up the formula for the distance between two points.

• if you have trouble getting dist_btwn's tests to pass, feel free to use check_within in
dist_btwn_test.cpp's main function! You can also write its testing bool expression seeing if the
absolute value of the diference between the actual function call and expected function call is small
enough.)

Problem 4 - choice 4: your choice!
Think of a non-main function that is "pure" -- that is, it expects one or more values and returns a result, but
does not have any side-effects such as printing to the screen -- that you would like to write, and use the
design recipe to design a separately-compilable version of that function.

Submit .h and .cpp files named based on your chosen function's name, and a file whose name is your
function's name followed by _test.cpp (that contains a main function printing to the screen the result of
running your function's tests).

CS 112 - Fall 2022 - Homework 1 p. 3 of 3

Submit your resulting files five_letter_str.h, five_letter_str.cpp, and
five_letter_str_test.cpp (that contains a main function printing to the screen the result of running
function five_letter_str's tests).

Problem 4 - choice 2: pos_in_bounds
REMINDER: The C++ string class has a method length, that expects nothing and returns the length of
the calling string.

Use the design recipe to design a separately-compilable function pos_in_bounds that expects a string and
what should be a position within that string, and returns true if that position is indeed a position in that
string. (That is, verify that the position given is in [0, length of that string minus 1], since the position of the
first character in a string is 0.)

For example:
pos_in_bounds("angle", 2) == true // a string of length 5 has
 // positions 0, 1, 2, 3, 4

pos_in_bounds("who", 3) == false // a string of length 3 has
 // positions 0, 1, 2

Submit your resulting files pos_in_bounds.h, pos_in_bounds.cpp, and pos_in_bounds_test.cpp
(that contains a main function printing to the screen the result of running function pos_in_bounds's tests).

Problem 4 - choice 3: dist_btwn
Use the design recipe to design a separately-compilable function dist_btwn that expects the x and y
coordinates of two points in a 2-dimensional coordinate system, and returns the distance between those
points.

For example:
dist_btwn(0.0, 0.0, 3.0, 4.0) == 5.0

...since the distance between the point (0.0, 0.0) and the point (3.0, 4.0) would be 5.0.

Submit your resulting files dist_btwn.h, dist_btwn.cpp, and dist_btwn_test.cpp (that contains a
main function printing to the screen the result of running function dist_btwn's tests).

(Hints:

• It is perfectly reasonable to look up the formula for the distance between two points.

• if you have trouble getting dist_btwn's tests to pass, feel free to use check_within in
dist_btwn_test.cpp's main function! You can also write its testing bool expression seeing if the
absolute value of the diference between the actual function call and expected function call is small
enough.)

Problem 4 - choice 4: your choice!
Think of a non-main function that is "pure" -- that is, it expects one or more values and returns a result, but
does not have any side-effects such as printing to the screen -- that you would like to write, and use the
design recipe to design a separately-compilable version of that function.

Submit .h and .cpp files named based on your chosen function's name, and a file whose name is your
function's name followed by _test.cpp (that contains a main function printing to the screen the result of
running your function's tests).

	Deadline
	Purpose
	How to submit
	Problem 1 - 20 points
	Problem 2 - 10 points
	Problem 3 - 35 points
	Problem 4 - 35 points
	Problem 4 - choice 1: five_letter_str
	Problem 4 - choice 2: pos_in_bounds
	Problem 4 - choice 3: dist_btwn
	Problem 4 - choice 4: your choice!

