
CS 112 - Fall 2022 - Homework 3 p. 1 of 3

CS 112 - Homework 3
Deadline
11:59 pm on Friday, September 16

Purpose
To answer questions related to C++ interactive input/output, file input, file output, and array basics, to
practice a bit more with file input/output, and to practice a bit more with arrays

How to submit
You will complete Problems 1, 2, 3, and 4 on the course Canvas site (short-answer questions on basics of
C++ interactive input/output, file input, file output, and arrays).

For Problems 5 onward, you will create the specified .cpp, .h , and .txt files on the CS50 IDE, and then
submit those to the course Canvas site.

NOTE: While I list the separate files you need to submit for each problem below, I am going to set up
Canvas to also accept .zip files.

That is,

• you can submit each .cpp, .h, and .txt file to Canvas

• OR, if you prefer, you may compress your files to be submitted into a single .zip file and submit that
.zip file to Canvas.

Problem 1 - 5 points
Problem 1 is correctly answering the "HW 3 - Problem 1 - Short-answer questions on C++ input/output" on
the course Canvas site.

Problem 2 - 9 points
Problem 2 is correctly answering the "HW 3 - Problem 2 - Short-answer questions on C++ file input" on the
course Canvas site.

Problem 3 - 8 points
Problem 3 is correctly answering the "HW 3 - Problem 3 - Short-answer questions on C++ file output" on the
course Canvas site.

Problem 4 - 8 points
Problem 4 is correctly answering the "HW 3 - Problem 4 - Short-answer questions on C++ array basics" on
the course Canvas site.

Problem 5 - function get_size
Consider a file of words structured as follows:

• Its first line should contain an integer, assumed to be the number of words in that file.

• Its remaining lines should contain that many words, assumed to have just one word per line.

For example, such a file might contain:

CS 112 - Fall 2022 - Homework 3 p. 1 of 3

CS 112 - Homework 3
Deadline
11:59 pm on Friday, September 16

Purpose
To answer questions related to C++ interactive input/output, file input, file output, and array basics, to
practice a bit more with file input/output, and to practice a bit more with arrays

How to submit
You will complete Problems 1, 2, 3, and 4 on the course Canvas site (short-answer questions on basics of
C++ interactive input/output, file input, file output, and arrays).

For Problems 5 onward, you will create the specified .cpp, .h , and .txt files on the CS50 IDE, and then
submit those to the course Canvas site.

NOTE: While I list the separate files you need to submit for each problem below, I am going to set up
Canvas to also accept .zip files.

That is,

• you can submit each .cpp, .h, and .txt file to Canvas

• OR, if you prefer, you may compress your files to be submitted into a single .zip file and submit that
.zip file to Canvas.

Problem 1 - 5 points
Problem 1 is correctly answering the "HW 3 - Problem 1 - Short-answer questions on C++ input/output" on
the course Canvas site.

Problem 2 - 9 points
Problem 2 is correctly answering the "HW 3 - Problem 2 - Short-answer questions on C++ file input" on the
course Canvas site.

Problem 3 - 8 points
Problem 3 is correctly answering the "HW 3 - Problem 3 - Short-answer questions on C++ file output" on the
course Canvas site.

Problem 4 - 8 points
Problem 4 is correctly answering the "HW 3 - Problem 4 - Short-answer questions on C++ array basics" on
the course Canvas site.

Problem 5 - function get_size
Consider a file of words structured as follows:

• Its first line should contain an integer, assumed to be the number of words in that file.

• Its remaining lines should contain that many words, assumed to have just one word per line.

For example, such a file might contain:

CS 112 - Fall 2022 - Homework 3 p. 2 of 3

4
eagle
bagels
glaring
regally

As a small warm-up, and as a small helper function for Problem 7's program, write a function get_size
that expects just a desired file name, assumed to have the structure described above. It has the side-effects of
trying to open that file and read just the value on its first line as an integer, and it tries to return the integer it
hopefully read.

For example, if you had a file lookity.txt in the current directory with the contents shown above, then:
get_size("lookity.txt") == 4

(It is fine to write this to be very trusting, and assume the given file is structured correctly; we have not
covered exception handling yet.)

Submit your files get_size.cpp, get_size.h, get_size_test.cpp, and at least two .txt files (each
with a different number of words) used in testing get_size in get_size_test.cpp.

Problem 6 - function add_to_file
As a second small warm-up, and as another small helper function for Problem 7's program, write a function
add_to_file that expects a desired file name and a word to add to that file, has the side-effects of trying to
open that file for appending and appending the word to be added to the end of that file followed by a
newline, and returns the length of the word it attempted to append to that file.

For example, if you had a file stuff.txt in the current working directory, then:
add_to_file("stuff.txt", "moo") == 3

...and now stuff.txt should have the contents it had before this followed now by moo and then a newline.

(Reminder: you can APPEND to a file by calling the two-argument version of the ofstream's open
method, using a second argument of ios::app. For example:
// opening my-log-file.txt for appending

ofstream log_file_stream;

log_file_stream("my-log-file.txt", ios::app);

)

Submit your files add_to_file.cpp, add_to_file.h, add_to_file_test.cpp, and at least two .txt
files used in testing add_to_file in add_to_file_test.cpp.

Problem 7 - function guess_word_from_file
It is not the most elegant thing, but provided along with this homework handout is a function rand_int that
expects a desired minimum integer and a desired maximum integer, and attempts to use the C++11 random
library to return a pseudo-random integer in the range [desired minimum given, desired maximum given].

Write a main function in guess_word_from_file that does at least the following:

• asks the user for a file containing the words to choose from, assumed to be structured as described in
Problem 5

• uses get_size to read the number of words in that file, and then declares an array of words of that size

• reads those words from the given file into the resulting array

CS 112 - Fall 2022 - Homework 3 p. 2 of 3

4
eagle
bagels
glaring
regally

As a small warm-up, and as a small helper function for Problem 7's program, write a function get_size
that expects just a desired file name, assumed to have the structure described above. It has the side-effects of
trying to open that file and read just the value on its first line as an integer, and it tries to return the integer it
hopefully read.

For example, if you had a file lookity.txt in the current directory with the contents shown above, then:
get_size("lookity.txt") == 4

(It is fine to write this to be very trusting, and assume the given file is structured correctly; we have not
covered exception handling yet.)

Submit your files get_size.cpp, get_size.h, get_size_test.cpp, and at least two .txt files (each
with a different number of words) used in testing get_size in get_size_test.cpp.

Problem 6 - function add_to_file
As a second small warm-up, and as another small helper function for Problem 7's program, write a function
add_to_file that expects a desired file name and a word to add to that file, has the side-effects of trying to
open that file for appending and appending the word to be added to the end of that file followed by a
newline, and returns the length of the word it attempted to append to that file.

For example, if you had a file stuff.txt in the current working directory, then:
add_to_file("stuff.txt", "moo") == 3

...and now stuff.txt should have the contents it had before this followed now by moo and then a newline.

(Reminder: you can APPEND to a file by calling the two-argument version of the ofstream's open
method, using a second argument of ios::app. For example:
// opening my-log-file.txt for appending

ofstream log_file_stream;

log_file_stream("my-log-file.txt", ios::app);

)

Submit your files add_to_file.cpp, add_to_file.h, add_to_file_test.cpp, and at least two .txt
files used in testing add_to_file in add_to_file_test.cpp.

Problem 7 - function guess_word_from_file
It is not the most elegant thing, but provided along with this homework handout is a function rand_int that
expects a desired minimum integer and a desired maximum integer, and attempts to use the C++11 random
library to return a pseudo-random integer in the range [desired minimum given, desired maximum given].

Write a main function in guess_word_from_file that does at least the following:

• asks the user for a file containing the words to choose from, assumed to be structured as described in
Problem 5

• uses get_size to read the number of words in that file, and then declares an array of words of that size

• reads those words from the given file into the resulting array

CS 112 - Fall 2022 - Homework 3 p. 3 of 3

• uses rand_int to get a pseudo-random choice of index from that array, and:

– makes the word at that index the word-of-the-day, and

– uses add_to_file to append the word to a file named words_used.txt

• asks the user to enter their guess of a word or to just type enter to quit

• while their guess is not the word of the day or an empty string, uses the function guess_match from
Week 3 Lecture 2 to display to the user the user how close their guess was, and asks them to enter either
another guess or enter to quit

• gives them an appropriate farewell message, either congratulating them on guessing the word or just giving
them an appropriate farewell.

Optional variations
Here are optional variations you may make to the above, if you would like:

• You may ask the user if they would like to play again, and use rand_int to select another/more words-of-
the-day and allow them to play again.

• You may limit the number of guesses a user can make (that is, only allow them a certain number of guesses
to guess the word).

• You may ask the user where they would like their results written, and write to that file each of the user's
guesses followed by guess_match's result, and/or how many tries it took them to guess the word, and/or
additional information or statistics as you would like.

– (But this would be in addition to using add_to_file to append the word(s) used to
words_used.txt.)

– You could also append to the file they specify, rather than open it for writing such that its existing
contents are deleted.

• You may use the Week 2 lab exercise's five_letter_word and/or ask_for_word as desired. (You
might also want to create a variation of ask_for_word that uses getline, to allow the user to be able to
just type enter to indicate wanting to quit.)

• (And further variations may also be fine, but ask me first if you would not be also meeting the minimum
requirements given.)

Submit your guess_word_from_file.cpp and all of the .cpp and .h files for all of the helper functions
it uses.

CS 112 - Fall 2022 - Homework 3 p. 3 of 3

• uses rand_int to get a pseudo-random choice of index from that array, and:

– makes the word at that index the word-of-the-day, and

– uses add_to_file to append the word to a file named words_used.txt

• asks the user to enter their guess of a word or to just type enter to quit

• while their guess is not the word of the day or an empty string, uses the function guess_match from
Week 3 Lecture 2 to display to the user the user how close their guess was, and asks them to enter either
another guess or enter to quit

• gives them an appropriate farewell message, either congratulating them on guessing the word or just giving
them an appropriate farewell.

Optional variations
Here are optional variations you may make to the above, if you would like:

• You may ask the user if they would like to play again, and use rand_int to select another/more words-of-
the-day and allow them to play again.

• You may limit the number of guesses a user can make (that is, only allow them a certain number of guesses
to guess the word).

• You may ask the user where they would like their results written, and write to that file each of the user's
guesses followed by guess_match's result, and/or how many tries it took them to guess the word, and/or
additional information or statistics as you would like.

– (But this would be in addition to using add_to_file to append the word(s) used to
words_used.txt.)

– You could also append to the file they specify, rather than open it for writing such that its existing
contents are deleted.

• You may use the Week 2 lab exercise's five_letter_word and/or ask_for_word as desired. (You
might also want to create a variation of ask_for_word that uses getline, to allow the user to be able to
just type enter to indicate wanting to quit.)

• (And further variations may also be fine, but ask me first if you would not be also meeting the minimum
requirements given.)

Submit your guess_word_from_file.cpp and all of the .cpp and .h files for all of the helper functions
it uses.

	Deadline
	Purpose
	How to submit
	Problem 1 - 5 points
	Problem 2 - 9 points
	Problem 3 - 8 points
	Problem 4 - 8 points
	Problem 5 - function get_size
	Problem 6 - function add_to_file
	Problem 7 - function guess_word_from_file
	Optional variations

