
FUN FACTS about USING a user-defined class
last modified: 2022-10-02

• In each function using a class you have defined, don't forget to #include the .h file for the class you are
using!

And include the .cpp file for the class in the g++ command compiling/linking/loading a program using
that class.

• Once you declare a class, you can make a (static) array of elements of that class using the syntax you might
have expected:

int quantities[10]; // an array able to hold 10 int values

double measures[10]; // an array able to hold 10 double values

PlayerChar participants[10]; // an array able to hold 10 PlayerChar objects

• And you can set an array element -- or a plain local variable, for that matter -- to contain an object instance
by assigning to it an appropriate call to its constructor. But these look different than the calls when you are
declaring an object!

– That is -- consider these working declarations, from PlayerChar-test.cpp:

PlayerChar sven;

PlayerChar angie("Angie", 10, 2.7, "tank", 15);

– Now consider these working declarations and assignments (that I tested before posting this handout):

PlayerChar team[3];

team[0] = PlayerChar();

team[1] = PlayerChar("Angie", 10, 2.7, "tank", 15);

team[2] = PlayerChar("Sven", 5, 1.35, "creampuff", 2);

• NOTE: cout's << operator does NOT know how to output an object of your card class!

But, it does know how to output a string! (or an int or double or bool)

– So, using our PlayerChar class as an example, while the following WILL NOT WORK:

PlayerChar angie("Angie", 10, 2.7, "tank", 15);

cout << angie << endl; // WARNING, DOES NOT WORK!!!!!

– The following WILL work:

PlayerChar angie("Angie", 10, 2.7, "tank", 15);

cout << angie.player_to_string() << endl;

angie.display_player();

cout << angie.get_name() << " " << angie.get_strength() << endl;

FUN FACTS about USING a user-defined class
last modified: 2022-10-02

• In each function using a class you have defined, don't forget to #include the .h file for the class you are
using!

And include the .cpp file for the class in the g++ command compiling/linking/loading a program using
that class.

• Once you declare a class, you can make a (static) array of elements of that class using the syntax you might
have expected:

int quantities[10]; // an array able to hold 10 int values

double measures[10]; // an array able to hold 10 double values

PlayerChar participants[10]; // an array able to hold 10 PlayerChar objects

• And you can set an array element -- or a plain local variable, for that matter -- to contain an object instance
by assigning to it an appropriate call to its constructor. But these look different than the calls when you are
declaring an object!

– That is -- consider these working declarations, from PlayerChar-test.cpp:

PlayerChar sven;

PlayerChar angie("Angie", 10, 2.7, "tank", 15);

– Now consider these working declarations and assignments (that I tested before posting this handout):

PlayerChar team[3];

team[0] = PlayerChar();

team[1] = PlayerChar("Angie", 10, 2.7, "tank", 15);

team[2] = PlayerChar("Sven", 5, 1.35, "creampuff", 2);

• NOTE: cout's << operator does NOT know how to output an object of your card class!

But, it does know how to output a string! (or an int or double or bool)

– So, using our PlayerChar class as an example, while the following WILL NOT WORK:

PlayerChar angie("Angie", 10, 2.7, "tank", 15);

cout << angie << endl; // WARNING, DOES NOT WORK!!!!!

– The following WILL work:

PlayerChar angie("Angie", 10, 2.7, "tank", 15);

cout << angie.player_to_string() << endl;

angie.display_player();

cout << angie.get_name() << " " << angie.get_strength() << endl;

