
CS 112 - Fall 2022 - Homework 7 p. 1 of 4

CS 112 - Homework 7
Deadline
11:59 pm on Friday, October 21

Purpose
To answer questions on the "big-3", those additional things a class should include and implement in a class
when it involves dynamic memory, and to create a class that includes those "big-3".

Note: you will be using, extending, and modifying the class that you create here in future homeworks.

How to submit
You will complete Problem 1 on the course Canvas site (short-answer questions on the "big-3", those
additional things a class should include and implement in a class when it involves dynamic memory).

For Problem 2, you will create the specified .cpp, and.h files on the CS50 IDE, and then submit those to
the course Canvas site.

NOTE: While I list the files you need to submit for each problem below, I am have set up Canvas to also
accept .zip files.

That is,

• you can submit each .cpp and .h file to Canvas.

• OR, if you prefer, you may compress your files to be submitted into a single .zip file and submit that
.zip file to Canvas.

Problem 1 - 12 points
Problem 1 is correctly answering the "HW 7 - Problem 1 - Short-answer questions on the "big-3" a class
should include when it involves dynamic memory" on the course Canvas site.

Problem 2 - class CardPack
Consider your C++ class PlayingCard or GameCard from Homework 4.

(Note: since you also will be submitting its .h and .cpp files for this homework, it is fine if you have
improved your PlayingCard or GameCard class since the version you submitted for Homework 4, as long
as it still meets Homework 4's minimum requirements. Just make sure that the version you submit with this
homework works with the class you create here.)

Create a class CardPack (in files CardPack.h and CardPack.cpp) that can be used to create a pack of
instances of your card class. It must include at least the following:

• a name private data field, a name the user assigns to a pack

• a size private data field, how many card instances are currently in a pack

• a cards private data field, a pointer to your card class, that will be used to point to a dynamically-
allocated array of instances of your card class

– Because an important purpose here is to practice implementing the "big-3" for your CardPack class,
this must be a dynamically-allocated array -- do not use a static array or a vector or a linked list for this
data field.

CS 112 - Fall 2022 - Homework 7 p. 1 of 4

CS 112 - Homework 7
Deadline
11:59 pm on Friday, October 21

Purpose
To answer questions on the "big-3", those additional things a class should include and implement in a class
when it involves dynamic memory, and to create a class that includes those "big-3".

Note: you will be using, extending, and modifying the class that you create here in future homeworks.

How to submit
You will complete Problem 1 on the course Canvas site (short-answer questions on the "big-3", those
additional things a class should include and implement in a class when it involves dynamic memory).

For Problem 2, you will create the specified .cpp, and.h files on the CS50 IDE, and then submit those to
the course Canvas site.

NOTE: While I list the files you need to submit for each problem below, I am have set up Canvas to also
accept .zip files.

That is,

• you can submit each .cpp and .h file to Canvas.

• OR, if you prefer, you may compress your files to be submitted into a single .zip file and submit that
.zip file to Canvas.

Problem 1 - 12 points
Problem 1 is correctly answering the "HW 7 - Problem 1 - Short-answer questions on the "big-3" a class
should include when it involves dynamic memory" on the course Canvas site.

Problem 2 - class CardPack
Consider your C++ class PlayingCard or GameCard from Homework 4.

(Note: since you also will be submitting its .h and .cpp files for this homework, it is fine if you have
improved your PlayingCard or GameCard class since the version you submitted for Homework 4, as long
as it still meets Homework 4's minimum requirements. Just make sure that the version you submit with this
homework works with the class you create here.)

Create a class CardPack (in files CardPack.h and CardPack.cpp) that can be used to create a pack of
instances of your card class. It must include at least the following:

• a name private data field, a name the user assigns to a pack

• a size private data field, how many card instances are currently in a pack

• a cards private data field, a pointer to your card class, that will be used to point to a dynamically-
allocated array of instances of your card class

– Because an important purpose here is to practice implementing the "big-3" for your CardPack class,
this must be a dynamically-allocated array -- do not use a static array or a vector or a linked list for this
data field.

CS 112 - Fall 2022 - Homework 7 p. 2 of 4

• at least two constructors, at least one of which is a no-argument constructor, and at least one of which
lets them specify a name and a size for the new card pack

– Make sure each constructor reasonably initializes all of the class' data fields.

– It is fine if a CardPack instance's size cannot be changed after it is created -- but if this is the case,
have the no-argument constructor make a pack of a default size (not size 0!) as we did for class Team.

– (It is also fine if a CardPack instance's size can be changed -- if you make this choice, be sure to carry
it through appropriately throughout your class' methods.)

• a destructor

• a copy constructor

• an overloaded assignment operator

• accessors for at least getting the calling pack's name, the calling pack's size, and at least one accessor for
getting a card from the calling pack based on its position

– You get to decide whether the accessor for getting a card from the calling pack given a 0-based or 1-
based position.

– You may also have additional accessors if you would like (for example, a no-argument accessor that
always returns the first or last card in the calling pack)

• mutators for at least changing the calling pack's name, and for setting a card in the calling pack

– The mutator for setting a card in the calling pack should expect the card to be "put" at that position as
well as the position (which you can choose to be either 0-based or 1-based).

– You may also have additional mutators if you would like (for example, if you decide you would like
them to be able to change the card pack's size).

• for "other" methods, you need at least a method display that somehow prints to the screen some
readable depiction of the calling card pack's data fields (including the data fields of the cards in the calling
pack)

– IF you want, you may ALSO have an add_card method that adds a card to the calling pack, changing
the calling card pack's size.

If you include this method, you get to choose if, along with the card to be added, it also has an
argument specifying the position where that new card should be placed.

(That is, it is OK if you have a one-argument add_card method that always adds the specified card to
the bottom/end of the calling pack, and it is also OK if you have a two-argument add_card method
that adds the specified card at a specified position in the calling pack, "shifting" the existing cards
appropriately.)

In addition to your files CardPack.h and CardPack.cpp, also write a main function in a file
pack-play.cpp that includes at least the following actions:

• use each of your constructors at least once in declaring CardPack instances

• print to the screen, for each of your CardPack accessors, at least one result of comparing a call to that
accessor to what it should return

– (For accessor(s) that return a card, you can use compare results of calling your card class' to_string
method to what the resulting card's to_string method should contain, since you probably have not
implemented a == operator for your card class.)

CS 112 - Fall 2022 - Homework 7 p. 2 of 4

• at least two constructors, at least one of which is a no-argument constructor, and at least one of which
lets them specify a name and a size for the new card pack

– Make sure each constructor reasonably initializes all of the class' data fields.

– It is fine if a CardPack instance's size cannot be changed after it is created -- but if this is the case,
have the no-argument constructor make a pack of a default size (not size 0!) as we did for class Team.

– (It is also fine if a CardPack instance's size can be changed -- if you make this choice, be sure to carry
it through appropriately throughout your class' methods.)

• a destructor

• a copy constructor

• an overloaded assignment operator

• accessors for at least getting the calling pack's name, the calling pack's size, and at least one accessor for
getting a card from the calling pack based on its position

– You get to decide whether the accessor for getting a card from the calling pack given a 0-based or 1-
based position.

– You may also have additional accessors if you would like (for example, a no-argument accessor that
always returns the first or last card in the calling pack)

• mutators for at least changing the calling pack's name, and for setting a card in the calling pack

– The mutator for setting a card in the calling pack should expect the card to be "put" at that position as
well as the position (which you can choose to be either 0-based or 1-based).

– You may also have additional mutators if you would like (for example, if you decide you would like
them to be able to change the card pack's size).

• for "other" methods, you need at least a method display that somehow prints to the screen some
readable depiction of the calling card pack's data fields (including the data fields of the cards in the calling
pack)

– IF you want, you may ALSO have an add_card method that adds a card to the calling pack, changing
the calling card pack's size.

If you include this method, you get to choose if, along with the card to be added, it also has an
argument specifying the position where that new card should be placed.

(That is, it is OK if you have a one-argument add_card method that always adds the specified card to
the bottom/end of the calling pack, and it is also OK if you have a two-argument add_card method
that adds the specified card at a specified position in the calling pack, "shifting" the existing cards
appropriately.)

In addition to your files CardPack.h and CardPack.cpp, also write a main function in a file
pack-play.cpp that includes at least the following actions:

• use each of your constructors at least once in declaring CardPack instances

• print to the screen, for each of your CardPack accessors, at least one result of comparing a call to that
accessor to what it should return

– (For accessor(s) that return a card, you can use compare results of calling your card class' to_string
method to what the resulting card's to_string method should contain, since you probably have not
implemented a == operator for your card class.)

CS 112 - Fall 2022 - Homework 7 p. 3 of 4

– This would be a good place to compile and run your test-so-far, to see if your constructors and
accessors seem to be working!

• write statements calling each of your CardPack mutators at least once,

and print statements to the screen that demonstrate that these mutators did appropriately change their
calling CardPack object

– For set_name, print the result of comparing the name of the affected card pack to the name it should
be if set_name worked as it should.

– For set_card, print the result of comparing the results of calling to_string for the card at that
position in the affected card pack to the value it should be if set_card worked as it should.

– If you add any other mutators, either print the result of a similar comparison that should be true after
executing that mutator, or print a message saying what should now be seen if the mutator worked
followed by a call of display for the affected card pack.

– This would be a good place to compile and run your test-so-far, to see if your mutators seem to be
working!

• To demonstrate your display method:

for each of your CardPack instances, print to the screen a message summarizing what should be seen for
that card pack, and then call the display method for that card pack.

• How can you demonstrate or test your destructor, copy constructor, and overloaded assignment
operator?

– I can't think of a good way to demonstrate or test your destructor -- but I will look to see if it
appropriately frees/deallocates the dynamically-allocated memory in the CardPack object passing out
of scope.

– To see whether your copy constructor is at least somewhat correct, do the following:

–write a declaration of a new CardPack instance and, as part of the declaration, initialize it to
one of your other CardPack instances (so we know this will use the copy constructor).

– use your mutator for setting a card in a CardPack instance in either the new CardPack instance
or the one you initialized it to

– then print to to the screen a message noting which card pack has had a card changed,

and follow that by calling display for both of these CardPack instances -- they should be mostly
the same, except the newly-set card in one should NOT also be in the other, if your copy
constructor has done its job correctly.

– To see whether your overloaded assignment operator is at least somewhat correct, do the following:

–write a statement assigning one of your already-declared CardPack instances to another of your
already-declared CardPack instances (so we know this will use the overloaded assignment
operator)

– use your mutator for setting a card in a CardPack instance in one of these CardPack instances

– then print to to the screen a message noting which card pack has had a card changed,

and follow that by calling display for both of these CardPack instances -- they should be mostly
the same, except the newly-set card in one should not also be in the other, if your overloaded
assignment operator has done its job correctly.

CS 112 - Fall 2022 - Homework 7 p. 3 of 4

– This would be a good place to compile and run your test-so-far, to see if your constructors and
accessors seem to be working!

• write statements calling each of your CardPack mutators at least once,

and print statements to the screen that demonstrate that these mutators did appropriately change their
calling CardPack object

– For set_name, print the result of comparing the name of the affected card pack to the name it should
be if set_name worked as it should.

– For set_card, print the result of comparing the results of calling to_string for the card at that
position in the affected card pack to the value it should be if set_card worked as it should.

– If you add any other mutators, either print the result of a similar comparison that should be true after
executing that mutator, or print a message saying what should now be seen if the mutator worked
followed by a call of display for the affected card pack.

– This would be a good place to compile and run your test-so-far, to see if your mutators seem to be
working!

• To demonstrate your display method:

for each of your CardPack instances, print to the screen a message summarizing what should be seen for
that card pack, and then call the display method for that card pack.

• How can you demonstrate or test your destructor, copy constructor, and overloaded assignment
operator?

– I can't think of a good way to demonstrate or test your destructor -- but I will look to see if it
appropriately frees/deallocates the dynamically-allocated memory in the CardPack object passing out
of scope.

– To see whether your copy constructor is at least somewhat correct, do the following:

–write a declaration of a new CardPack instance and, as part of the declaration, initialize it to
one of your other CardPack instances (so we know this will use the copy constructor).

– use your mutator for setting a card in a CardPack instance in either the new CardPack instance
or the one you initialized it to

– then print to to the screen a message noting which card pack has had a card changed,

and follow that by calling display for both of these CardPack instances -- they should be mostly
the same, except the newly-set card in one should NOT also be in the other, if your copy
constructor has done its job correctly.

– To see whether your overloaded assignment operator is at least somewhat correct, do the following:

–write a statement assigning one of your already-declared CardPack instances to another of your
already-declared CardPack instances (so we know this will use the overloaded assignment
operator)

– use your mutator for setting a card in a CardPack instance in one of these CardPack instances

– then print to to the screen a message noting which card pack has had a card changed,

and follow that by calling display for both of these CardPack instances -- they should be mostly
the same, except the newly-set card in one should not also be in the other, if your overloaded
assignment operator has done its job correctly.

CS 112 - Fall 2022 - Homework 7 p. 4 of 4

• If you included any other methods, include appropriate demonstrations or tests for those methods. (You
can ask me if you are not sure how you might test or demonstrate those.)

• Is there anything else you would like to try with your new class here? Feel free to add that after the above.

Submit your resulting .cpp and .h files; also include your PlayingCard or GameCard .h and .cpp files.

CS 112 - Fall 2022 - Homework 7 p. 4 of 4

• If you included any other methods, include appropriate demonstrations or tests for those methods. (You
can ask me if you are not sure how you might test or demonstrate those.)

• Is there anything else you would like to try with your new class here? Feel free to add that after the above.

Submit your resulting .cpp and .h files; also include your PlayingCard or GameCard .h and .cpp files.

	Deadline
	Purpose
	How to submit
	Problem 1 - 12 points
	Problem 2 - class CardPack

