
CS 112 - Fall 2022 - Homework 8 p. 1 of 3

CS 112 - Homework 8
Deadline
11:59 pm on Friday, November 4

Purpose
To answer questions related to vectors and linked lists, to practice more with vectors, and to write two more
linked list functions.

How to submit
You will complete Problems 1 and 2 on the course Canvas site (short-answer questions on vectors and
linked lists).

For Problems 3 onward, you will create the specified .cpp, .h, and .txt files on the CS50 IDE, and then
submit those to the course Canvas site.

NOTE: While I list the files you need to submit for each problem below, I have set up Canvas to also accept
.zip files.

That is,

• you can submit each .cpp, .h, and .txt file to Canvas.

• OR, if you prefer, you may compress your files to be submitted into a single .zip file and submit that
.zip file to Canvas.

Problem 1 - 9 points
Problem 1 is correctly answering the "HW 8 - Problem 1 - Short-answer questions on vectors" on the course
Canvas site.

Problem 2 - 12 points
Problem 2 is correctly answering the "HW 8 - Problem 2 - Short-answer questions related to linked lists" on
the course Canvas site.

Setup for Problems 3 - onward
• FIRST: in the CS50 IDE, in your folder for this homework create copies of the following:

– Node.h and Node.cpp from Week 10 - Lecture 1 or 2 (they should be identical)

– the versions of linked-list-functs.h, linked-list-functs.cpp, and
linked-list-tests.cpp from Week 10 - Lecture 2.

• At the beginning of each of linked-list-functs.h, linked-list-functs.cpp, and
linked-list-tests.cpp, in their opening comment block:

– add and Your Name to the end of the by: line

– for last modified:, add a new FIRST line (moving the existing original date to the next line) listing
your Homework 8's last-modified date and the functions you are implementing for Homework 8.

Problem 3 - play a bit more with vectors!
As some additional vector practice, choose ONE of the suggestions below for this problem. (You are

CS 112 - Fall 2022 - Homework 8 p. 1 of 3

CS 112 - Homework 8
Deadline
11:59 pm on Friday, November 4

Purpose
To answer questions related to vectors and linked lists, to practice more with vectors, and to write two more
linked list functions.

How to submit
You will complete Problems 1 and 2 on the course Canvas site (short-answer questions on vectors and
linked lists).

For Problems 3 onward, you will create the specified .cpp, .h, and .txt files on the CS50 IDE, and then
submit those to the course Canvas site.

NOTE: While I list the files you need to submit for each problem below, I have set up Canvas to also accept
.zip files.

That is,

• you can submit each .cpp, .h, and .txt file to Canvas.

• OR, if you prefer, you may compress your files to be submitted into a single .zip file and submit that
.zip file to Canvas.

Problem 1 - 9 points
Problem 1 is correctly answering the "HW 8 - Problem 1 - Short-answer questions on vectors" on the course
Canvas site.

Problem 2 - 12 points
Problem 2 is correctly answering the "HW 8 - Problem 2 - Short-answer questions related to linked lists" on
the course Canvas site.

Setup for Problems 3 - onward
• FIRST: in the CS50 IDE, in your folder for this homework create copies of the following:

– Node.h and Node.cpp from Week 10 - Lecture 1 or 2 (they should be identical)

– the versions of linked-list-functs.h, linked-list-functs.cpp, and
linked-list-tests.cpp from Week 10 - Lecture 2.

• At the beginning of each of linked-list-functs.h, linked-list-functs.cpp, and
linked-list-tests.cpp, in their opening comment block:

– add and Your Name to the end of the by: line

– for last modified:, add a new FIRST line (moving the existing original date to the next line) listing
your Homework 8's last-modified date and the functions you are implementing for Homework 8.

Problem 3 - play a bit more with vectors!
As some additional vector practice, choose ONE of the suggestions below for this problem. (You are

CS 112 - Fall 2022 - Homework 8 p. 2 of 3

encouraged to try both if you like, but I will only grade one of them, in the interests of time.)

Problem 3 - Option 1 - main function in file words_vector.cpp
Write a main function in a file words_vector.cpp that does the following:

• It asks the user for the name of a file assumed to contain JUST words, and it tries to open that file for
reading.

• It declares an empty vector able to hold strings, and reads all of the words from that file into that vector.

• Print to the screen how many words were read into the vector, and then print the vector's contents, one
word per line.

• Now that you have that vector of strings, do something of your choice with them -- for example:

– compute the average length of the words in that vector, and print that average to the screen

– determine the shortest word length and the longest word length, and print those to the screen

– ask the user to guess a word, and then tell them if their guess is in the vector

– (or some action(s) where you have to do something with each word in the vector)

Submit your file words_vector.cpp and at least two .txt files (each with a different number of words)
that you used for trying out your program. (If your choice of additional actions involves calling other
function(s), include their .cpp and .h files, also.)

Problem 3 - Option 2 - function read_words_vector
Write the following vector-based variation of Homework 4 - Problem 4's read_words function:

Function read_words_vector expects just two arguments: a desired file name and an empty pass-by-
reference vector, able to hold strings, and has the side-effects of:

• trying to open that file for reading

• reading in the words in the file and storing them into the passed vector (thus actually changing the
argument vector)

...and that returns, in this case, the number of words read into the argument vector.

So, notice that the file, in this case, is not assumed to start with the number of words in the file; it is assumed
to just contain words. And, read_words_vector does not need to have the size of the passed vector as a
parameter.

Submit your files read_words_vector.cpp, read_words_vector.h,
read_words_vector_test.cpp, and the .txt files used in testing read_words_vector in
read_words_vector_test.cpp.

Optional extensions:

• Write this so that it works with non-empty as well as empty vector arguments -- that is, if the argument
vector is not empty, it first overwrites any current words with those it reads, and then adds to the end of the
vector as needed.

• As you are reading words from the file, only write them to the argument vector if they are of length 5.

• As you are reading words from the file, only write them to the argument vector if they are of length 5 and
only contain letters.

• As you are reading words from the file, only write them to the argument vector if they are not already in

CS 112 - Fall 2022 - Homework 8 p. 2 of 3

encouraged to try both if you like, but I will only grade one of them, in the interests of time.)

Problem 3 - Option 1 - main function in file words_vector.cpp
Write a main function in a file words_vector.cpp that does the following:

• It asks the user for the name of a file assumed to contain JUST words, and it tries to open that file for
reading.

• It declares an empty vector able to hold strings, and reads all of the words from that file into that vector.

• Print to the screen how many words were read into the vector, and then print the vector's contents, one
word per line.

• Now that you have that vector of strings, do something of your choice with them -- for example:

– compute the average length of the words in that vector, and print that average to the screen

– determine the shortest word length and the longest word length, and print those to the screen

– ask the user to guess a word, and then tell them if their guess is in the vector

– (or some action(s) where you have to do something with each word in the vector)

Submit your file words_vector.cpp and at least two .txt files (each with a different number of words)
that you used for trying out your program. (If your choice of additional actions involves calling other
function(s), include their .cpp and .h files, also.)

Problem 3 - Option 2 - function read_words_vector
Write the following vector-based variation of Homework 4 - Problem 4's read_words function:

Function read_words_vector expects just two arguments: a desired file name and an empty pass-by-
reference vector, able to hold strings, and has the side-effects of:

• trying to open that file for reading

• reading in the words in the file and storing them into the passed vector (thus actually changing the
argument vector)

...and that returns, in this case, the number of words read into the argument vector.

So, notice that the file, in this case, is not assumed to start with the number of words in the file; it is assumed
to just contain words. And, read_words_vector does not need to have the size of the passed vector as a
parameter.

Submit your files read_words_vector.cpp, read_words_vector.h,
read_words_vector_test.cpp, and the .txt files used in testing read_words_vector in
read_words_vector_test.cpp.

Optional extensions:

• Write this so that it works with non-empty as well as empty vector arguments -- that is, if the argument
vector is not empty, it first overwrites any current words with those it reads, and then adds to the end of the
vector as needed.

• As you are reading words from the file, only write them to the argument vector if they are of length 5.

• As you are reading words from the file, only write them to the argument vector if they are of length 5 and
only contain letters.

• As you are reading words from the file, only write them to the argument vector if they are not already in

CS 112 - Fall 2022 - Homework 8 p. 3 of 3

the argument vector.

Problem 4 - function get_size
If we had a List class implemented using a linked list, it would be good for it to have a size data field, as
that would be convenient (and the methods could reasonably maintain that). But we just have a collection of
linked list functions right now, so a function getting the size of a linked list would be useful.

• Add a function get_size to linked-list-functs.cpp and linked-list-functs.h.

• get_size should expect a pointer to the beginning of a linked list of Node instances, and return the size
of that list (that is, the number of nodes in that list).

• In linked-list-tests.cpp, add at least the following after the cout printing that you are testing
get_size:

– Print to the screen the result of comparing the value of a call to get_size on an empty list to what it
should return.

– Use function insert_at_front to create a linked list of at least 5 items.

– Print to the screen the result of comparing the value of a call to get_size on that list of at least 5
items to what it should return.

– Call delete_list to free/deallocate the memory for your linked list of at least 5 items. (Note: you
can shift this call to delete_list after your other function's tests below if you'd like to use your list
for testing it, also.)

Problem 5 - function sum_list
Add a function sum_list to linked-list-functs.cpp and linked-list-functs.h.

• sum_list should expect a pointer to the beginning of a linked list of Node instances, and return the sum
of the values in the data fields of that linked list. It should return a sum of 0 if the linked list is empty.

– Use a return type of NodeDataType for sum_list -- and note that this is a function that will likely
need modification if NodeDataType is ever changed to a type that does not have + as an operator! 8-)

• In linked-list-tests.cpp, add at least the following:

– Print to the screen a message saying that you are testing sum_list.

– Print to the screen the result of comparing the value of a call to sum_list on an empty list to what it
should return.

– Use function insert_at_front to create a linked list of at least 5 items (or use your at-least-5-items
linked list from testing get_size).

– Print to the screen the result of comparing the value of a call to sum_list on that list of at least 5
items to what it should return.

– Call delete_list to free/deallocate the memory for your linked list of at least 5 items.

Submit your resulting files linked-list-functs.h, linked-list-functs.cpp, and
linked-list-tests.cpp.

CS 112 - Fall 2022 - Homework 8 p. 3 of 3

the argument vector.

Problem 4 - function get_size
If we had a List class implemented using a linked list, it would be good for it to have a size data field, as
that would be convenient (and the methods could reasonably maintain that). But we just have a collection of
linked list functions right now, so a function getting the size of a linked list would be useful.

• Add a function get_size to linked-list-functs.cpp and linked-list-functs.h.

• get_size should expect a pointer to the beginning of a linked list of Node instances, and return the size
of that list (that is, the number of nodes in that list).

• In linked-list-tests.cpp, add at least the following after the cout printing that you are testing
get_size:

– Print to the screen the result of comparing the value of a call to get_size on an empty list to what it
should return.

– Use function insert_at_front to create a linked list of at least 5 items.

– Print to the screen the result of comparing the value of a call to get_size on that list of at least 5
items to what it should return.

– Call delete_list to free/deallocate the memory for your linked list of at least 5 items. (Note: you
can shift this call to delete_list after your other function's tests below if you'd like to use your list
for testing it, also.)

Problem 5 - function sum_list
Add a function sum_list to linked-list-functs.cpp and linked-list-functs.h.

• sum_list should expect a pointer to the beginning of a linked list of Node instances, and return the sum
of the values in the data fields of that linked list. It should return a sum of 0 if the linked list is empty.

– Use a return type of NodeDataType for sum_list -- and note that this is a function that will likely
need modification if NodeDataType is ever changed to a type that does not have + as an operator! 8-)

• In linked-list-tests.cpp, add at least the following:

– Print to the screen a message saying that you are testing sum_list.

– Print to the screen the result of comparing the value of a call to sum_list on an empty list to what it
should return.

– Use function insert_at_front to create a linked list of at least 5 items (or use your at-least-5-items
linked list from testing get_size).

– Print to the screen the result of comparing the value of a call to sum_list on that list of at least 5
items to what it should return.

– Call delete_list to free/deallocate the memory for your linked list of at least 5 items.

Submit your resulting files linked-list-functs.h, linked-list-functs.cpp, and
linked-list-tests.cpp.

	Deadline
	Purpose
	How to submit
	Problem 1 - 9 points
	Problem 2 - 12 points
	Setup for Problems 3 - onward
	Problem 3 - play a bit more with vectors!
	Problem 3 - Option 1 - main function in file words_vector.cpp
	Problem 3 - Option 2 - function read_words_vector

	Problem 4 - function get_size
	Problem 5 - function sum_list

