
CS 112 - Fall 2022 - Homework 11 p. 1 of 4

CS 112 - Homework 11
Deadline
11:59 pm on Friday, December 9

Purpose
To answer questions on dynamic/late binding and multiple inheritance, to practice lightly with dynamic/late
binding, and to write a program using collections of your card class.

How to submit
You will complete Problem 1 on the course Canvas site (short-answer questions on dynamic/late binding and
multiple inheritance).

For Problems 2 onward, you will create the specified .cpp, .h, and .txt files on the CS50 IDE, and then
submit those to the course Canvas site.

NOTE: While I list the files you need to submit for each problem below, I have set up Canvas to also accept
.zip files.

That is,

• you can submit each .cpp, .h, and .txt file to Canvas.

• OR, if you prefer, you may compress your files to be submitted into a single .zip file and submit that
.zip file to Canvas.

Problem 1 - 14 points
Problem 1 is correctly answering the "HW 11 - Problem 1 - Short-answer questions on dynamic/late binding
and multiple inheritance" on the course Canvas site.

Problem 2 - modifying your base and derived card classes slightly to
allow for some dynamic/late binding
Consider your C++ class PlayingCard or GameCard from Homework 9, that now includes an overloaded
== (comparison) operator.

(Note: since you also will be submitting its .h and .cpp files for this homework, it is fine if you have
improved your PlayingCard or GameCard class since the version you submitted for Homework 9, as long
as it still meets Homework 4's and Homework 9's minimum requirements. Just make sure that the version
you submit with this homework works with the class you create here.)

And, consider your derived class you created in Homework 9, Problem 5, that has your card class as its base
class.

Modify your base card class and your derived card class appropriately so that your base card class' methods
display and to_string that are redefined in your derived card class will now be overridden in your
derived card class -- that is, make the (small) changes in their .h files so that dynamic/late binding for these
two methods might be possible.

(Make sure you update the last modified: part of your .h files for your base card class and your derived
card class, noting that you are adding syntax to make it clear that methods display and to_string are
now going to be overridden instead of redefined.)

CS 112 - Fall 2022 - Homework 11 p. 1 of 4

CS 112 - Homework 11
Deadline
11:59 pm on Friday, December 9

Purpose
To answer questions on dynamic/late binding and multiple inheritance, to practice lightly with dynamic/late
binding, and to write a program using collections of your card class.

How to submit
You will complete Problem 1 on the course Canvas site (short-answer questions on dynamic/late binding and
multiple inheritance).

For Problems 2 onward, you will create the specified .cpp, .h, and .txt files on the CS50 IDE, and then
submit those to the course Canvas site.

NOTE: While I list the files you need to submit for each problem below, I have set up Canvas to also accept
.zip files.

That is,

• you can submit each .cpp, .h, and .txt file to Canvas.

• OR, if you prefer, you may compress your files to be submitted into a single .zip file and submit that
.zip file to Canvas.

Problem 1 - 14 points
Problem 1 is correctly answering the "HW 11 - Problem 1 - Short-answer questions on dynamic/late binding
and multiple inheritance" on the course Canvas site.

Problem 2 - modifying your base and derived card classes slightly to
allow for some dynamic/late binding
Consider your C++ class PlayingCard or GameCard from Homework 9, that now includes an overloaded
== (comparison) operator.

(Note: since you also will be submitting its .h and .cpp files for this homework, it is fine if you have
improved your PlayingCard or GameCard class since the version you submitted for Homework 9, as long
as it still meets Homework 4's and Homework 9's minimum requirements. Just make sure that the version
you submit with this homework works with the class you create here.)

And, consider your derived class you created in Homework 9, Problem 5, that has your card class as its base
class.

Modify your base card class and your derived card class appropriately so that your base card class' methods
display and to_string that are redefined in your derived card class will now be overridden in your
derived card class -- that is, make the (small) changes in their .h files so that dynamic/late binding for these
two methods might be possible.

(Make sure you update the last modified: part of your .h files for your base card class and your derived
card class, noting that you are adding syntax to make it clear that methods display and to_string are
now going to be overridden instead of redefined.)

CS 112 - Fall 2022 - Homework 11 p. 2 of 4

Problem 3 - seeing some dynamic/late binding in action for your
card classes
In a main function in a file dynamic-cards.cpp:

• Create a vector able to hold at least 8 elements, where each element is of type pointer to your (base) card
class.

• Initialize your vector so that:

– at least four of its elements point to dynamically-allocated instances of your (base) card class.

– at least four of its elements point to dynamically-allocated instances of your derived card class.

• Loop through your vector, calling the display method for the object pointed to by each of its pointers,
and also printing to the screen the result of calling the to_string method for the object pointed to by
each of its pointers.

– If you made the needed changes in Problem 2, and because these are pointers to dynamically-allocated
instances of your base card class and your derived card class, dynamic binding should happen so that
you see the additional data field values for instances of your derived card class (but not, of course, for
instances of your base card class).

• (Add any other statements for things you'd like to do with your vector.)

• Loop through your vector, calling delete for each of the dynamically-allocated objects being pointed to.

Problem 4 - using Rankable a bit more
Unfortunately, I cannot think of a good reason why your derived card class objects should be rankable, but
your base card class objects should not...! So I did not think of a reasonable multiple-inheritance problem in
time for this homework.

But, here's a fun fact that I verified: if a base class happens to itself be a derived class -- say from a pure
abstract class such as Rankable -- then (not too surprisingly!) any classes derived from it inherit the method
its base class implemented to avoid becoming abstract themselves. Like a typical inherited method, the
derived class can simply inherit it, or it can override it if it wishes.

So: consider the Rankable pure abstract class from the Week 14 Lab Exercise. Modify your base card class
so that it is derived from Rankable, and implement method compute_rank for your card class in a way
that you think is reasonable for your card class. And, declare method compute_rank as virtual in your
base card class.

Then: given your choice for how compute_rank was implemented for your base card class: does that same
implementation "work" for your derived card class? If so, that's fine -- your derived card class can simply
inherit your base card class' compute_rank. But if it does not, then provide an appropriate overridden
version of compute_rank in your derived card class.

And, make a copy of Problem 3's dynamic-cards.cpp in dynamic-cards-2.cpp, and in your loop
calling display and to_string for each vector instance, also add a statement printing to the screen the
result of calling the compute_rank method for the object pointed to by each of its pointers.

Problem 5 - a small card competition
Consider: if you had two sets of instances of your card class, you could have them "compete" in some way,
even if as straightforwardly as comparing their instances' ranks as determined by compute_rank.

To wrap up CS 112, then, design and implement a simple competition using collections of your card class.

CS 112 - Fall 2022 - Homework 11 p. 2 of 4

Problem 3 - seeing some dynamic/late binding in action for your
card classes
In a main function in a file dynamic-cards.cpp:

• Create a vector able to hold at least 8 elements, where each element is of type pointer to your (base) card
class.

• Initialize your vector so that:

– at least four of its elements point to dynamically-allocated instances of your (base) card class.

– at least four of its elements point to dynamically-allocated instances of your derived card class.

• Loop through your vector, calling the display method for the object pointed to by each of its pointers,
and also printing to the screen the result of calling the to_string method for the object pointed to by
each of its pointers.

– If you made the needed changes in Problem 2, and because these are pointers to dynamically-allocated
instances of your base card class and your derived card class, dynamic binding should happen so that
you see the additional data field values for instances of your derived card class (but not, of course, for
instances of your base card class).

• (Add any other statements for things you'd like to do with your vector.)

• Loop through your vector, calling delete for each of the dynamically-allocated objects being pointed to.

Problem 4 - using Rankable a bit more
Unfortunately, I cannot think of a good reason why your derived card class objects should be rankable, but
your base card class objects should not...! So I did not think of a reasonable multiple-inheritance problem in
time for this homework.

But, here's a fun fact that I verified: if a base class happens to itself be a derived class -- say from a pure
abstract class such as Rankable -- then (not too surprisingly!) any classes derived from it inherit the method
its base class implemented to avoid becoming abstract themselves. Like a typical inherited method, the
derived class can simply inherit it, or it can override it if it wishes.

So: consider the Rankable pure abstract class from the Week 14 Lab Exercise. Modify your base card class
so that it is derived from Rankable, and implement method compute_rank for your card class in a way
that you think is reasonable for your card class. And, declare method compute_rank as virtual in your
base card class.

Then: given your choice for how compute_rank was implemented for your base card class: does that same
implementation "work" for your derived card class? If so, that's fine -- your derived card class can simply
inherit your base card class' compute_rank. But if it does not, then provide an appropriate overridden
version of compute_rank in your derived card class.

And, make a copy of Problem 3's dynamic-cards.cpp in dynamic-cards-2.cpp, and in your loop
calling display and to_string for each vector instance, also add a statement printing to the screen the
result of calling the compute_rank method for the object pointed to by each of its pointers.

Problem 5 - a small card competition
Consider: if you had two sets of instances of your card class, you could have them "compete" in some way,
even if as straightforwardly as comparing their instances' ranks as determined by compute_rank.

To wrap up CS 112, then, design and implement a simple competition using collections of your card class.

CS 112 - Fall 2022 - Homework 11 p. 3 of 4

Here are the requirements for your program:

• Note: I highly recommend starting with something simple, and get that working first! Then you can try
expanding it in interesting directions from there if time permits. Something simple that meets the
following requirements will receive full-credit.

• You can use your card class, your derived class whose base class is your card class, another derived class
whose base class is your card class, or a combination of these.

• It needs to use at least two instances of collections of your card class,

where each collection contains at least 3 cards, and

where those collections are implemented as at least one of the following:

– instance(s) of the CardPack class from Homework 7

– instance(s) of the CardPile class from Homework 10

– instance(s) of vectors of card instances or vectors of pointers to dynamically-allocated card instances

– instance(s) of dynamically-allocated arrays of card instances or dynamically-allocated arrays of
pointers to dynamically-allocated card instances

– (Why am I giving you so many choices here? Because depending on what kind of competition you
choose, one or more of the above might be the better choice for your tasks.)

– (Why at least two? Because in a competition, there need to be at least two competitors... 8-))

• How will you get your cards for your collections of cards?

– They can be read from a file.

– You can ask the user to enter them.

– They can be automatically generated.

– You are more than welcome to use function rand_int posted along with Homework 3, if that
might be useful to you for building a random-ish collection of cards.

• The competition can be very simple, but needs to be such that it does not have the same results every time
the program is run.

– (That is, for example, you cannot just always declare the first card set as the winner. 8-))

• If your competition's rounds/parts are zipping by on-screen too quickly to be appreciated, a useful
technique is to ask the user to "enter anything to continue", then the program has to read what they type in
before it goes on.

• Your competition should also print to the screen descriptive messages describing what is happening
during each step or round.

– (These can be very simple, also -- for example, saying that this card beat that card, or saying that this
card set had a higher average rank than that card set, etc.)

A few of the many possibilities:
• You could compare which collection has the lowest, or the highest, or the best-average, etc., of some

aspect of its cards.

• You could compare each card in each collection to each other based on some aspect, and see which
collection "wins" more of these comparisons.

CS 112 - Fall 2022 - Homework 11 p. 3 of 4

Here are the requirements for your program:

• Note: I highly recommend starting with something simple, and get that working first! Then you can try
expanding it in interesting directions from there if time permits. Something simple that meets the
following requirements will receive full-credit.

• You can use your card class, your derived class whose base class is your card class, another derived class
whose base class is your card class, or a combination of these.

• It needs to use at least two instances of collections of your card class,

where each collection contains at least 3 cards, and

where those collections are implemented as at least one of the following:

– instance(s) of the CardPack class from Homework 7

– instance(s) of the CardPile class from Homework 10

– instance(s) of vectors of card instances or vectors of pointers to dynamically-allocated card instances

– instance(s) of dynamically-allocated arrays of card instances or dynamically-allocated arrays of
pointers to dynamically-allocated card instances

– (Why am I giving you so many choices here? Because depending on what kind of competition you
choose, one or more of the above might be the better choice for your tasks.)

– (Why at least two? Because in a competition, there need to be at least two competitors... 8-))

• How will you get your cards for your collections of cards?

– They can be read from a file.

– You can ask the user to enter them.

– They can be automatically generated.

– You are more than welcome to use function rand_int posted along with Homework 3, if that
might be useful to you for building a random-ish collection of cards.

• The competition can be very simple, but needs to be such that it does not have the same results every time
the program is run.

– (That is, for example, you cannot just always declare the first card set as the winner. 8-))

• If your competition's rounds/parts are zipping by on-screen too quickly to be appreciated, a useful
technique is to ask the user to "enter anything to continue", then the program has to read what they type in
before it goes on.

• Your competition should also print to the screen descriptive messages describing what is happening
during each step or round.

– (These can be very simple, also -- for example, saying that this card beat that card, or saying that this
card set had a higher average rank than that card set, etc.)

A few of the many possibilities:
• You could compare which collection has the lowest, or the highest, or the best-average, etc., of some

aspect of its cards.

• You could compare each card in each collection to each other based on some aspect, and see which
collection "wins" more of these comparisons.

CS 112 - Fall 2022 - Homework 11 p. 4 of 4

• You could create a shared pile of cards, let each player draw a card from the top, and whosever is "better"
by some measure you choose, that player could get to add both to their personal pile of cards. When the
shared pile is empty, whosever personal pile of cards is bigger could be declared the winner.

• You could create a set of cards for each player, and each turn each player selects a card or removes one
from the top or etc., and then the players' card choices "battle" in some way based on their chosen card's
data fields. Perhaps the "wins" are tallied, and after all the cards have been played, a winner is determined.

CS 112 - Fall 2022 - Homework 11 p. 4 of 4

• You could create a shared pile of cards, let each player draw a card from the top, and whosever is "better"
by some measure you choose, that player could get to add both to their personal pile of cards. When the
shared pile is empty, whosever personal pile of cards is bigger could be declared the winner.

• You could create a set of cards for each player, and each turn each player selects a card or removes one
from the top or etc., and then the players' card choices "battle" in some way based on their chosen card's
data fields. Perhaps the "wins" are tallied, and after all the cards have been played, a winner is determined.

	Deadline
	Purpose
	How to submit
	Problem 1 - 14 points
	Problem 2 - modifying your base and derived card classes slightly to allow for some dynamic/late binding
	Problem 3 - seeing some dynamic/late binding in action for your card classes
	Problem 4 - using Rankable a bit more
	Problem 5 - a small card competition
	A few of the many possibilities:

