
CS 112 - Week 13 Lab Exercise p. 1 of 3

CS 112 - Week 13 Lab Exercise - 2022-11-18

Deadline
Due by the end of lab on 2022-11-18.

How to submit
Submit your .cpp and .h files for the problems below on https://canvas.humboldt.edu.

IF you prefer, you may instead compress your .cpp and .h files to be submitted into a single .zip file
and submit that .zip file to Canvas.

(I'll also accept the .zip file created when one downloads a folder from the CS50 IDE, as long as it
includes all of your lab's .cpp and .h files -- I suspect it will also contain your resulting executables, but
that's OK.)

Purpose
To practice writing a derived class.

Important notes
• Be sure to put BOTH of your names and today's date in each of the files for this lab exercise.

• When you are done, or before you leave lab, the driver/whoever's account has the lab exercise files
should e-mail a copy of all of the files to BOTH/ALL of you, and EACH of you should submit these
files on Canvas.

Lab Exercise Setup
• FIRST: in the CS50 IDE, in your folder for today's lab exercise, create copies of the following:

– Point.h and Point.cpp from Week 13 Lecture 2 (so you get the revised to_string method
now using an istringstream! 8-))

Practice writing a derived class
Create a derived class ThreeDPoint, in files ThreeDPoint.h and ThreeDPoint.cpp, derived from
base class Point.

You will NOT modify the Point files for this!

Perform the following tasks:

• (Of course, make sure all of your names are in ThreeDPoint.h and ThreeDPoint.cpp!)

• The ThreeDPoint class should inherit all the characteristics of a Point object, and add the following
data field (placed in the private area of the ThreeDPoint class definition):

– z - which is the z coordinate of a point (x, y, z) in three-dimensional space

• The ThreeDPoint class should have two constructor methods:

– a no-argument constructor (that should initialize each of the data fields x, y, and z to 0) and

CS 112 - Week 13 Lab Exercise p. 1 of 3

CS 112 - Week 13 Lab Exercise - 2022-11-18

Deadline
Due by the end of lab on 2022-11-18.

How to submit
Submit your .cpp and .h files for the problems below on https://canvas.humboldt.edu.

IF you prefer, you may instead compress your .cpp and .h files to be submitted into a single .zip file
and submit that .zip file to Canvas.

(I'll also accept the .zip file created when one downloads a folder from the CS50 IDE, as long as it
includes all of your lab's .cpp and .h files -- I suspect it will also contain your resulting executables, but
that's OK.)

Purpose
To practice writing a derived class.

Important notes
• Be sure to put BOTH of your names and today's date in each of the files for this lab exercise.

• When you are done, or before you leave lab, the driver/whoever's account has the lab exercise files
should e-mail a copy of all of the files to BOTH/ALL of you, and EACH of you should submit these
files on Canvas.

Lab Exercise Setup
• FIRST: in the CS50 IDE, in your folder for today's lab exercise, create copies of the following:

– Point.h and Point.cpp from Week 13 Lecture 2 (so you get the revised to_string method
now using an istringstream! 8-))

Practice writing a derived class
Create a derived class ThreeDPoint, in files ThreeDPoint.h and ThreeDPoint.cpp, derived from
base class Point.

You will NOT modify the Point files for this!

Perform the following tasks:

• (Of course, make sure all of your names are in ThreeDPoint.h and ThreeDPoint.cpp!)

• The ThreeDPoint class should inherit all the characteristics of a Point object, and add the following
data field (placed in the private area of the ThreeDPoint class definition):

– z - which is the z coordinate of a point (x, y, z) in three-dimensional space

• The ThreeDPoint class should have two constructor methods:

– a no-argument constructor (that should initialize each of the data fields x, y, and z to 0) and

https://canvas.humboldt.edu/

CS 112 - Week 13 Lab Exercise p. 2 of 3

– a three-argument constructor (which allows the caller to specify initial values for the data fields x,
y, and z)

– Each should fully initialize the data fields of both Point and ThreeDPoint classes.

– These constructors should call the corresponding Point constructor to set the initial values of the
Point data fields, and will also set the initial value of the z data field.

• The ThreeDPoint class should have one accessor method get_z

and one mutator method set_z

...for the new data field z.

• Write a REDEFINED method display, that writes a ThreeDPoint's info to the screen, including all
the data fields in both Point and ThreeDPoint classes.

• Write a REDEFINED method to_string, that returns a string depiction of a ThreeDPoint's info,
including all the data fields in both Point and ThreeDPoint classes.

• Write a version of the == operator that expects a ThreeDPoint object and returns whether the calling
ThreeDPoint object has the same x, y, and z values, respectively, as the given ThreeDPoint object.

• Write a version of method dist_from that expects a ThreeDPoint object and returns the distance
between the calling ThreeDPoint object and the given ThreeDPoint object.

– The mathematical formula for the distance between two points (x1, y1, z1) and (x2, y2, z2) is:
√(x 2−x 1)2+(y 2− y 1)2+(z 2−z 1)2

– Note: the cmath library includes the following methods:

– sqrt - expects double number, returns the square root of that number

– pow - expects a double number to raise to some power, and a double power to raise the first
number to, and returns the result of raising that first number to the given power.

THEN, in a main function in a file three-d-play.cpp,

• Declare instances of ThreeDPoint using both of its constructors

• Call each of its (inherited AND newly created!) accessors at least once, printing to the screen the result
of comparing their results to what they SHOULD return

• Call each of its (inherited AND newly created!) mutators at least once,

and then print to the screen the results of comparing the resulting values of those changed data fields to
what they SHOULD return

• Compare the results of dist_from to what it should return when called with at least your
ThreeDPoint instances, and when called from one of your ThreeDPoint instances with that
ThreeDPoint instance as its argument (to determine the distance between a three-d point and itself...
8-))

• Compare the results of to_string to what it should return for at least one of your ThreeDPoint
instances

• Call display on each ThreeDPoint, preceded by printing a description of what one SHOULD see

Submit your resulting three-d-play.cpp, ThreeDPoint.h, and ThreeDPoint.cpp

CS 112 - Week 13 Lab Exercise p. 2 of 3

– a three-argument constructor (which allows the caller to specify initial values for the data fields x,
y, and z)

– Each should fully initialize the data fields of both Point and ThreeDPoint classes.

– These constructors should call the corresponding Point constructor to set the initial values of the
Point data fields, and will also set the initial value of the z data field.

• The ThreeDPoint class should have one accessor method get_z

and one mutator method set_z

...for the new data field z.

• Write a REDEFINED method display, that writes a ThreeDPoint's info to the screen, including all
the data fields in both Point and ThreeDPoint classes.

• Write a REDEFINED method to_string, that returns a string depiction of a ThreeDPoint's info,
including all the data fields in both Point and ThreeDPoint classes.

• Write a version of the == operator that expects a ThreeDPoint object and returns whether the calling
ThreeDPoint object has the same x, y, and z values, respectively, as the given ThreeDPoint object.

• Write a version of method dist_from that expects a ThreeDPoint object and returns the distance
between the calling ThreeDPoint object and the given ThreeDPoint object.

– The mathematical formula for the distance between two points (x1, y1, z1) and (x2, y2, z2) is:
√(x 2−x 1)2+(y 2− y 1)2+(z 2−z 1)2

– Note: the cmath library includes the following methods:

– sqrt - expects double number, returns the square root of that number

– pow - expects a double number to raise to some power, and a double power to raise the first
number to, and returns the result of raising that first number to the given power.

THEN, in a main function in a file three-d-play.cpp,

• Declare instances of ThreeDPoint using both of its constructors

• Call each of its (inherited AND newly created!) accessors at least once, printing to the screen the result
of comparing their results to what they SHOULD return

• Call each of its (inherited AND newly created!) mutators at least once,

and then print to the screen the results of comparing the resulting values of those changed data fields to
what they SHOULD return

• Compare the results of dist_from to what it should return when called with at least your
ThreeDPoint instances, and when called from one of your ThreeDPoint instances with that
ThreeDPoint instance as its argument (to determine the distance between a three-d point and itself...
8-))

• Compare the results of to_string to what it should return for at least one of your ThreeDPoint
instances

• Call display on each ThreeDPoint, preceded by printing a description of what one SHOULD see

Submit your resulting three-d-play.cpp, ThreeDPoint.h, and ThreeDPoint.cpp

CS 112 - Week 13 Lab Exercise p. 3 of 3

• When you are done, or before you leave lab, use Gmail to

– MAIL a copy of ALL of the resulting files for these programs to BOTH of you, and

– EACH of you should SUBMIT the required files on Canvas

CS 112 - Week 13 Lab Exercise p. 3 of 3

• When you are done, or before you leave lab, use Gmail to

– MAIL a copy of ALL of the resulting files for these programs to BOTH of you, and

– EACH of you should SUBMIT the required files on Canvas

	Deadline
	How to submit
	Purpose
	Important notes
	Lab Exercise Setup
	Practice writing a derived class

