
CS 279 - Fall 2022 - Homework 3 p. 1 of 4

CS 279 - Homework 3
Deadline
11:59 pm on Friday, September 23

Purpose
To practice with the bash shell's versions of local variables, shell interactive input, if statements, for loops,
command-line arguments, and more.

How to submit
You will complete Problems 1 and 2 on the course Canvas site (short answer questions on local shell
variable basics and on built-in variables for command-line arguments), so that you can see if you are on the
right track.

For the rest of the problems, you will create several files and then submit those to the course Canvas site.

NOTE: While I list the separate files you need to submit for each problem below, I am going to set up
Canvas to also accept .zip files.

That is,

• you can submit each file to Canvas,

• OR, if you prefer, you may compress your files to be submitted into a single .zip file and submit that
.zip file to Canvas.

Important notes
Assume, for all bash scripts in this course, that the following are required:

• Start each script with the line that is considered good style (and is a CS 279 course requirement), that
specifies that this script should be executed using the bash shell

• After a blank line, put in one or more comments including at least the name of the shell script, your name,
and its last modified date

• And follow these comments with a blank line.

Problem 1 - 14 points
Problem 1 is correctly answering the "HW 3 - Problem 1 - Short-answer questions on local shell variable
basics" on the course Canvas site.

Problem 2 - 12 points
Problem 1 is correctly answering the "HW 3 - Problem 2 - Short-answer questions on built-in variables for
command-line arguments" on the course Canvas site.

Problem 3
FUN FACTS:
• [-d filename] # will be true if filename is a directory file
• [-f filename] # will be true if filename is a "regular" file (not a directory or a device file)

CS 279 - Fall 2022 - Homework 3 p. 1 of 4

CS 279 - Homework 3
Deadline
11:59 pm on Friday, September 23

Purpose
To practice with the bash shell's versions of local variables, shell interactive input, if statements, for loops,
command-line arguments, and more.

How to submit
You will complete Problems 1 and 2 on the course Canvas site (short answer questions on local shell
variable basics and on built-in variables for command-line arguments), so that you can see if you are on the
right track.

For the rest of the problems, you will create several files and then submit those to the course Canvas site.

NOTE: While I list the separate files you need to submit for each problem below, I am going to set up
Canvas to also accept .zip files.

That is,

• you can submit each file to Canvas,

• OR, if you prefer, you may compress your files to be submitted into a single .zip file and submit that
.zip file to Canvas.

Important notes
Assume, for all bash scripts in this course, that the following are required:

• Start each script with the line that is considered good style (and is a CS 279 course requirement), that
specifies that this script should be executed using the bash shell

• After a blank line, put in one or more comments including at least the name of the shell script, your name,
and its last modified date

• And follow these comments with a blank line.

Problem 1 - 14 points
Problem 1 is correctly answering the "HW 3 - Problem 1 - Short-answer questions on local shell variable
basics" on the course Canvas site.

Problem 2 - 12 points
Problem 1 is correctly answering the "HW 3 - Problem 2 - Short-answer questions on built-in variables for
command-line arguments" on the course Canvas site.

Problem 3
FUN FACTS:
• [-d filename] # will be true if filename is a directory file
• [-f filename] # will be true if filename is a "regular" file (not a directory or a device file)

CS 279 - Fall 2022 - Homework 3 p. 2 of 4

We're going to assume, for our purposes here, that someone using this problem's script will NOT have any
device files in the directories they are using this script in!

Write a bash shell script named file-type or file-type.sh that meets the following requirements:

• This script expects exactly one command-line argument, no more and no less. If it is not given exactly one
command-line argument, it should complain and exit, with an exit status of 1.

• Otherwise:

– if the single command-line argument is the name of a regular file, this should print a message to the
screen saying this is a regular file (including the file's name)

– otherwise, if the single command-line argument is the name of a directory, this should print a message
to the screen saying this is a directory (including the directory's name)

– otherwise, we'll assume that means this is not a file in the current directory, and this should print a
message to the screen saying this (including the non-existent name).

Then, demonstrate its use as follows:

• Call your script with no arguments, redirecting the result to p3-no-args.txt

• Call your script with two or more arguments, redirecting the result to p3-too-many-args.txt

• Call your script with the name of a non-existent file, redirecting the result to p3-not-exists.txt

• Call your script with the name of a directory file, redirecting the result to p3-dir-file.txt

• Call your script with the name of a regular file, redirecting the result to p3-reg-file.txt

Submit your resulting files:

• file-type or file-type.sh

• p3-no-args.txt

• p3-too-many-args.txt

• p3-not-exists.txt

• p3-dir-file.txt

• p3-reg-file.txt

Problem 4
Write a bash shell script named gen-fodder or gen-fodder.sh that meets the following requirements:

• It should use a "classic"-style for-loop to create in the current directory the 20 files test1.txt,
test2.txt, ... test20.txt,

– each containing one line containing the file's name,

– and one line containing any line of text you'd like that also includes the file's number (test1.txt
includes a 1 in its second line, test2.txt includes a 2 in its second line, etc.)

Then, demonstrate its use as follows:

• create an empty new directory

• in that directory, run:

– echo an "about to start test" message into a file p4-gen-test.txt

CS 279 - Fall 2022 - Homework 3 p. 2 of 4

We're going to assume, for our purposes here, that someone using this problem's script will NOT have any
device files in the directories they are using this script in!

Write a bash shell script named file-type or file-type.sh that meets the following requirements:

• This script expects exactly one command-line argument, no more and no less. If it is not given exactly one
command-line argument, it should complain and exit, with an exit status of 1.

• Otherwise:

– if the single command-line argument is the name of a regular file, this should print a message to the
screen saying this is a regular file (including the file's name)

– otherwise, if the single command-line argument is the name of a directory, this should print a message
to the screen saying this is a directory (including the directory's name)

– otherwise, we'll assume that means this is not a file in the current directory, and this should print a
message to the screen saying this (including the non-existent name).

Then, demonstrate its use as follows:

• Call your script with no arguments, redirecting the result to p3-no-args.txt

• Call your script with two or more arguments, redirecting the result to p3-too-many-args.txt

• Call your script with the name of a non-existent file, redirecting the result to p3-not-exists.txt

• Call your script with the name of a directory file, redirecting the result to p3-dir-file.txt

• Call your script with the name of a regular file, redirecting the result to p3-reg-file.txt

Submit your resulting files:

• file-type or file-type.sh

• p3-no-args.txt

• p3-too-many-args.txt

• p3-not-exists.txt

• p3-dir-file.txt

• p3-reg-file.txt

Problem 4
Write a bash shell script named gen-fodder or gen-fodder.sh that meets the following requirements:

• It should use a "classic"-style for-loop to create in the current directory the 20 files test1.txt,
test2.txt, ... test20.txt,

– each containing one line containing the file's name,

– and one line containing any line of text you'd like that also includes the file's number (test1.txt
includes a 1 in its second line, test2.txt includes a 2 in its second line, etc.)

Then, demonstrate its use as follows:

• create an empty new directory

• in that directory, run:

– echo an "about to start test" message into a file p4-gen-test.txt

CS 279 - Fall 2022 - Homework 3 p. 3 of 4

– append the results of an ls command to p4-gen-test.txt to show the directory's initial contents

• now run gen-fodder.sh in that directory

• and afterwards, echo an "after test" message and append it to p4-gen-test.txt

• and then append the results of another ls command to p4-gen-test.txt to show the directory's
resulting contents (should be considerably more files now)

Submit your resulting files:

• gen-fodder or gen-fodder.sh

• p4-gen-test.txt

Problem 5
Write a bash shell script use-fodder or use-fodder.sh that meets the following requirements:

• It should use a "list-style" for-loop that uses a back-quoted command with file globbing using the
wildcard character * to list ONLY the file names that start with test and end with .txt,

– for each of these files, append the line "TAG gotcha" to the end of these files

To demonstrate this script, do the following:

• go to the directory you used to test gen-fodder.sh in Problem 4 -- it should still contain the files
test1.txt, test2.txt, ... test20.txt

• echo "directory contents:" into a file p5-use-test.txt

• list the files currently in this directory, appending the result to p5-use-test.txt

• run use-fodder.sh in this directory

• echo "after ran use-fodder.sh:", appending the result to p5-use-test.txt

• then, run this command (which we will be discussing in more detail later!):
grep "TAG gotcha" * >> p5-use-test.txt

Submit your resulting files:

• use-fodder or use-fodder.sh

• p5-use-test.txt

Problem 6
FUN FACTS:

• [-e filename] # will be true if filename is the name of a file that currently exists

• [-d filename] # will be true if filename is a directory file

• [-f filename] # will be true if filename is a "regular" file (not a directory or a device file)

• You can precede any of the above with ! to negate them -- that is,

[! -e filename] # will be true if filename is NOT the name of a file that currently exists

For Homework 2 - Problem 5, you wrote a script backup-all or backup-all.sh that copied all non-
directory files to a local directory named BACKUP.

CS 279 - Fall 2022 - Homework 3 p. 3 of 4

– append the results of an ls command to p4-gen-test.txt to show the directory's initial contents

• now run gen-fodder.sh in that directory

• and afterwards, echo an "after test" message and append it to p4-gen-test.txt

• and then append the results of another ls command to p4-gen-test.txt to show the directory's
resulting contents (should be considerably more files now)

Submit your resulting files:

• gen-fodder or gen-fodder.sh

• p4-gen-test.txt

Problem 5
Write a bash shell script use-fodder or use-fodder.sh that meets the following requirements:

• It should use a "list-style" for-loop that uses a back-quoted command with file globbing using the
wildcard character * to list ONLY the file names that start with test and end with .txt,

– for each of these files, append the line "TAG gotcha" to the end of these files

To demonstrate this script, do the following:

• go to the directory you used to test gen-fodder.sh in Problem 4 -- it should still contain the files
test1.txt, test2.txt, ... test20.txt

• echo "directory contents:" into a file p5-use-test.txt

• list the files currently in this directory, appending the result to p5-use-test.txt

• run use-fodder.sh in this directory

• echo "after ran use-fodder.sh:", appending the result to p5-use-test.txt

• then, run this command (which we will be discussing in more detail later!):
grep "TAG gotcha" * >> p5-use-test.txt

Submit your resulting files:

• use-fodder or use-fodder.sh

• p5-use-test.txt

Problem 6
FUN FACTS:

• [-e filename] # will be true if filename is the name of a file that currently exists

• [-d filename] # will be true if filename is a directory file

• [-f filename] # will be true if filename is a "regular" file (not a directory or a device file)

• You can precede any of the above with ! to negate them -- that is,

[! -e filename] # will be true if filename is NOT the name of a file that currently exists

For Homework 2 - Problem 5, you wrote a script backup-all or backup-all.sh that copied all non-
directory files to a local directory named BACKUP.

CS 279 - Fall 2022 - Homework 3 p. 4 of 4

But -- with interactive input and command-line arguments now in your bash toolbox, you can make a more
versatile and less "clunky" version of this script, that can avoid certain errors more gracefully.

Write a bash shell script named backup-to or backup-to.sh that meets the following requirements:

• Find out where the non-directory regular files in the current working directory should be backed up to:

– if NO command-line arguments were given, ask the user to enter the name of the directory to which to
back up the files, and read in what they enter

– otherwise, assume the first command-line argument is the name of the directory to which to back up the
files.

• If a file with the name requested for the back-up directory currently exists and is not a directory file,
complain and exit with an error status of 1.

• If a file with the name requested for the backup directory does NOT currently exist, create it.

• Now try to copy all non-directory files to this desired directory to back up to -- BUT use a loop and an if
statement so that you ONLY attempt to copy regular files to this directory to back up to!

– (so, you should not get the errors messages from attempting to copy directories over, for example)

• Finally, it should echo to the screen a descriptive message indicating that it is about to show the current
contents of the requested backup directory,

– ...and then it should output to the screen the current contents of that requested backup directory.

Also perform at least the following tests of backup-to/backup-to.sh in a directory containing at least 3
non-directory files:

• Call it with an existing non-directory file as its command-line argument, to show that it complains and
exits as expected, redirecting the script's output into a file p6-non-dir-test.txt

• Call it with a currently-not-existing name as its command-line argument, to show it creates that as a
backup directory and copies all the non-directory local files into it, redirecting the script's output into a file
p6-new-dir-test.txt

• Create a new text file new-file.txt, and then call your script with the same directory name as used in
the previous test (to show this also works), redirecting the script's output into a file
p6-existing-dir-test.txt

– Note that you should see new-file.txt in its contents in p6-existing-dir-test.txt

(Because any prompts for interactive input will also be redirected when you redirect a script's output to a file,
I cannot think of a reasonable way for you to demo that you've tested your script's behavior when no
command-line argument is given! But you should test your script and make sure it also behaves for those
cases, also.)

Submit your resulting files:

• backup-to or backup-to.sh

• p6-non-dir-test.txt

• p6-new-dir-test.txt

• p6-existing-dir-test.txt

CS 279 - Fall 2022 - Homework 3 p. 4 of 4

But -- with interactive input and command-line arguments now in your bash toolbox, you can make a more
versatile and less "clunky" version of this script, that can avoid certain errors more gracefully.

Write a bash shell script named backup-to or backup-to.sh that meets the following requirements:

• Find out where the non-directory regular files in the current working directory should be backed up to:

– if NO command-line arguments were given, ask the user to enter the name of the directory to which to
back up the files, and read in what they enter

– otherwise, assume the first command-line argument is the name of the directory to which to back up the
files.

• If a file with the name requested for the back-up directory currently exists and is not a directory file,
complain and exit with an error status of 1.

• If a file with the name requested for the backup directory does NOT currently exist, create it.

• Now try to copy all non-directory files to this desired directory to back up to -- BUT use a loop and an if
statement so that you ONLY attempt to copy regular files to this directory to back up to!

– (so, you should not get the errors messages from attempting to copy directories over, for example)

• Finally, it should echo to the screen a descriptive message indicating that it is about to show the current
contents of the requested backup directory,

– ...and then it should output to the screen the current contents of that requested backup directory.

Also perform at least the following tests of backup-to/backup-to.sh in a directory containing at least 3
non-directory files:

• Call it with an existing non-directory file as its command-line argument, to show that it complains and
exits as expected, redirecting the script's output into a file p6-non-dir-test.txt

• Call it with a currently-not-existing name as its command-line argument, to show it creates that as a
backup directory and copies all the non-directory local files into it, redirecting the script's output into a file
p6-new-dir-test.txt

• Create a new text file new-file.txt, and then call your script with the same directory name as used in
the previous test (to show this also works), redirecting the script's output into a file
p6-existing-dir-test.txt

– Note that you should see new-file.txt in its contents in p6-existing-dir-test.txt

(Because any prompts for interactive input will also be redirected when you redirect a script's output to a file,
I cannot think of a reasonable way for you to demo that you've tested your script's behavior when no
command-line argument is given! But you should test your script and make sure it also behaves for those
cases, also.)

Submit your resulting files:

• backup-to or backup-to.sh

• p6-non-dir-test.txt

• p6-new-dir-test.txt

• p6-existing-dir-test.txt

	Deadline
	Purpose
	How to submit
	Important notes
	Problem 1 - 14 points
	Problem 2 - 12 points
	Problem 3
	Problem 4
	Problem 5
	Problem 6

