CS 279 - Fall 2022 - Homework 9 p-1of5

CS 279 - Homework 9

Deadline
11:59 pm on Friday, December 2

Purpose

To answer questions about more history-searching options and file links, and to practice a bit more with file
links and Bash functions.

How to submit

You will complete Problems 1 and 2 on the course Canvas site.

For the rest of the problems, you will create several files and then submit those to the course Canvas site.

NOTE: While I list the separate files you need to submit for each problem below, I am going to set up
Canvas to also accept . zip files.

That is,

* you can submit each file to Canvas,
* OR, if you prefer, you may compress your files to be submitted into a single . zip file and submit that
.zip file to Canvas.

Important notes

Assume, for all bash scripts in this course, that the following are required:

* Start each script (EXCEPT for a script containing JUST Bash functions) with the line that is considered
good style (and is a CS 279 course requirement), that specifies that this script should be executed using the
bash shell

* After a blank line, put in one or more comments including at least the name of the shell script, your name,
and its last modified date

¢ And follow these comments with a blank line.

Problem 1 - 8 points

Problem 1 is correctly answering the "HW 9 - Problem 1 - Short-answer questions involving other history-
searching options" on the course Canvas site.

Problem 2 - 8 points

Problem 1 is correctly answering the "HW 9 - Problem 2 - Short-answer questions involving links" on the
course Canvas site.

Problem 3
In a file hw9o-3. txt, include:

* your name
* the part you are giving an answer for
* the answers specified below

CS 279 - Fall 2022 - Homework 9 p-2of5

3 part a
On nrs-projects, within a directory other than your home directory:

* Create a regular file some-commands . txt whose contents include the names of at least three
UNIX/Linux commands.

* Now create a symbolic/soft link named ref-s-commands . txt that refers to your file
some-commands . txt.

— As long as it is not within your home directory, this symbolic link can be in the same directory or in a
different directory, your choice!

* Now create a hard link named ref-h-commands . txt that refers to your file
some-commands . txt.

— As long as it is not within your home directory, this hard link can be in the same directory or in a
different directory, your choice!

* Write one or more 1s -1i commands to show the names and i-node numbers for some-commands. txt,
ref-s-commands.txt, and ref-h-commands.txt.

For your answer for this part, paste the results of this/these 1s -1i commands.

3 parth

Fun fact: We have seen that the £ind command has an option -type, and when used with d this can be used
to find directories. So, to find and print the names of all directories reachable from the current directory, this
works:

find . -type d -print
It turns out that you can use -type with 1 (that's an el, not a one) to find symbolic links!

SO: for your answer for this part, write a £ind command that will find and print the names of all symbolic
links reachable from your nrs-projects home directory (even if you run this command in a directory other
than your home directory).

3 part c

Run your command from 3 part b on nrs-projects -- it should find at least your symbolic link that you created
in 3 part a (and possibly more, depending for example on whether you were the "driver" for the Week 13 Lab
Exercise!)

Note that it should not include your ref-h-commands. txt in its output -- this command will not find hard
links.

For your answer to this part, paste in the result of running 1s -1 with the full pathname your find
command returns for re f-s-commands. txt.

3 partd

Call wc for ref-h-commands. txt, ref-s-commands.txt, and some-commands. txt, and paste in the
results as the first part of your answer for this part.

Using nano, add the name of at least one additional UNIX/Linux command of your choice to
some-commands . txt and save that change.

Now, again call wc for both ref-commands. txt and some-commands . txt, and paste in the results as the
second part of your answer for this part.

CS 279 - Fall 2022 - Homework 9 p-3 of5

3 part e
So -- are symbolic links really used very much in a UNIX/Linux system?

You can find out how many you can reach from nrs-projects' root -- try the following command on nrs-
projects:

find / -type 1 -print 2> /dev/null | wc -1
Paste its output (the number of lines in its result) as the first part of your answer to this part.
One of these symbolic links is /usr/java/latest.

Paste the result of calling:

ls -1 /usr/java/latest
...as the last part of your answer to this part.

Submit your resulting files some-commands . txt and hw9-3.txt .

Problem 4

Create a shell script hw9-functions. sh that contains the following two Bash functions.

* Because it will be included in other shell scripts using source, do not start it with the usual
#!/bin/bash -- but do still include the usual shell-script comment(s)!

4 part a

Hm! It turns out, for all the things that are easy to test in a Bash shell script, testing whether something is an
integer takes a bit of a kluge!

It looks like one approach is to use a regular expression to do this. For our purposes, we in particular would
like a non-negative integer, and we'll assume that it is not to be preceded by a +.

Write a Bash function is quant that meets the following specifications:

* We'll be discussing the rather odd meaning of return in Bash functions -- and for this function, have it
return the desired exit status. (That is, return 0 or return 1 ratherthanexit 0 orexit 1)

* We'd like it to "silently" work -- it won't output anything to standard output, it will simply return with an
appropriate exit status.

* if exactly one command-line argument is not given, it returns a non-zero exit status of your choice

* otherwise, it should use a regular expression in an i £ statement to return an exit status of 0 (success!) if the
input is indeed an (unsigned) integer greater than or equal to 0, and to return a non-zero exit status of your
choice if the input is not.

Note that you can test this by typing something like:
source hw9-functions.sh

is quant 47

echo $7?

...to see what exit status it returned.

4 partb
Remember the overly-trusting function make 1line from the Week 13 Lab Exercise?

» "expects a string to repeat and a number of repetitions, and echoes to standard output a single line

CS 279 - Fall 2022 - Homework 9 p-4of5

containing that string repeated that many times."
— For example,
make line Moo 4

...would cause the following to be echoed to the screen:

MooMooMooMoo
Modify your function make line from the Week 13 Lab Exercise as follows:

* This version should check the number of arguments it is called with, and if it is not called with exactly 2
command-line arguments, it should return a non-zero exit status of your choice.

* This version should also use 4 part a's function is quant to help it to verify that the second argument is a
non-negative integer, and it should return a non-zero exit status of your choice if it is not.

* Otherwise, it indeed echoes to standard output the desired single line to standard output containing that
string repeated that many times.

Note that you can test this by typing something like:
source hw9-functions.sh

make line Moo 4

echo $7?

make line Moo Baa

echo $7?

...to see its output (if any) and what exit status it returned.

Submit your resulting file hw9-functions. sh.

Problem 5

Create a shell script hw9-test. sh that tests your functions from Problem 4, meeting the following
requirements:

¢ It should use the source command with hw9-functions. sh to make Problem 4's functions available to
this shell script.

* Test function is_quant:

— Echo that you are about to call is gquant with no arguments, do so, and then echo that call's returned
exit status to the screen in a message of your choice.

— Echo that you are about to call is gquant with more than one argument, do so, and then echo that
call's returned exit status to the screen in a message of your choice.

— Echo that you are about to call is quant with an unsigned integer, do so, and then echo that call's
returned exit status to the screen in a message of your choice.

— Echo that you are about to call is quant with an argument that ISN'T an unsigned integer, do so, and
then echo that call's returned exit status to the screen in a message of your choice.

— (if you would like to add additional tests of your is quant along with the above, that's fine and
encouraged!)

* Test your now-less-trusting function make line:

CS 279 - Fall 2022 - Homework 9 p-5of5

— Echo that you are about to call make 1ine with the wrong number of arguments, do so, and then echo
that call's returned exit status to the screen in a message of your choice.

— Echo that you are about to call make 1ine with two arguments, but with a NON-number as the second
argument, do so, and then echo that call's returned exit status to the screen in a message of your choice.

— Echo that you are about to call make 1ine with two GOOD arguments, and then do so -- BUT for this
call, set a VARIABLE to the backquoted result of calling this function with those good arguments, and
then echo the value of that variable afterwards to the screen in a message of your choice.

— (if you would like to add additional tests of your make 1line along with the above, that's fine and
encouraged!)

Submit your resulting file hw9-test. sh.

Submit your resulting files:

e some—-commands.txt
* hw9o-3.txt

e hw9-functions.sh
* hw9-test.sh

	Deadline
	Purpose
	How to submit
	Important notes
	Problem 1 - 8 points
	Problem 2 - 8 points
	Problem 3
	3 part a
	3 part b
	find . -type d -print
	3 part c
	3 part d
	3 part e

	Problem 4
	4 part a
	4 part b

	Problem 5

