
CS 279 - Fall 2022 - Homework 9 p. 1 of 5

CS 279 - Homework 9
Deadline
11:59 pm on Friday, December 2

Purpose
To answer questions about more history-searching options and file links, and to practice a bit more with file
links and Bash functions.

How to submit
You will complete Problems 1 and 2 on the course Canvas site.

For the rest of the problems, you will create several files and then submit those to the course Canvas site.

NOTE: While I list the separate files you need to submit for each problem below, I am going to set up
Canvas to also accept .zip files.

That is,

• you can submit each file to Canvas,
• OR, if you prefer, you may compress your files to be submitted into a single .zip file and submit that
.zip file to Canvas.

Important notes
Assume, for all bash scripts in this course, that the following are required:

• Start each script (EXCEPT for a script containing JUST Bash functions) with the line that is considered
good style (and is a CS 279 course requirement), that specifies that this script should be executed using the
bash shell

• After a blank line, put in one or more comments including at least the name of the shell script, your name,
and its last modified date

• And follow these comments with a blank line.

Problem 1 - 8 points
Problem 1 is correctly answering the "HW 9 - Problem 1 - Short-answer questions involving other history-
searching options" on the course Canvas site.

Problem 2 - 8 points
Problem 1 is correctly answering the "HW 9 - Problem 2 - Short-answer questions involving links" on the
course Canvas site.

Problem 3
In a file hw9-3.txt, include:

• your name
• the part you are giving an answer for
• the answers specified below

CS 279 - Fall 2022 - Homework 9 p. 1 of 5

CS 279 - Homework 9
Deadline
11:59 pm on Friday, December 2

Purpose
To answer questions about more history-searching options and file links, and to practice a bit more with file
links and Bash functions.

How to submit
You will complete Problems 1 and 2 on the course Canvas site.

For the rest of the problems, you will create several files and then submit those to the course Canvas site.

NOTE: While I list the separate files you need to submit for each problem below, I am going to set up
Canvas to also accept .zip files.

That is,

• you can submit each file to Canvas,
• OR, if you prefer, you may compress your files to be submitted into a single .zip file and submit that
.zip file to Canvas.

Important notes
Assume, for all bash scripts in this course, that the following are required:

• Start each script (EXCEPT for a script containing JUST Bash functions) with the line that is considered
good style (and is a CS 279 course requirement), that specifies that this script should be executed using the
bash shell

• After a blank line, put in one or more comments including at least the name of the shell script, your name,
and its last modified date

• And follow these comments with a blank line.

Problem 1 - 8 points
Problem 1 is correctly answering the "HW 9 - Problem 1 - Short-answer questions involving other history-
searching options" on the course Canvas site.

Problem 2 - 8 points
Problem 1 is correctly answering the "HW 9 - Problem 2 - Short-answer questions involving links" on the
course Canvas site.

Problem 3
In a file hw9-3.txt, include:

• your name
• the part you are giving an answer for
• the answers specified below

CS 279 - Fall 2022 - Homework 9 p. 2 of 5

3 part a
On nrs-projects, within a directory other than your home directory:

• Create a regular file some-commands.txt whose contents include the names of at least three
UNIX/Linux commands.

• Now create a symbolic/soft link named ref-s-commands.txt that refers to your file
some-commands.txt.

– As long as it is not within your home directory, this symbolic link can be in the same directory or in a
different directory, your choice!

• Now create a hard link named ref-h-commands.txt that refers to your file
some-commands.txt.

– As long as it is not within your home directory, this hard link can be in the same directory or in a
different directory, your choice!

• Write one or more ls -li commands to show the names and i-node numbers for some-commands.txt,
ref-s-commands.txt, and ref-h-commands.txt.

For your answer for this part, paste the results of this/these ls -li commands.

3 part b
Fun fact: We have seen that the find command has an option -type, and when used with d this can be used
to find directories. So, to find and print the names of all directories reachable from the current directory, this
works:
find . -type d -print

It turns out that you can use -type with l (that's an el, not a one) to find symbolic links!

SO: for your answer for this part, write a find command that will find and print the names of all symbolic
links reachable from your nrs-projects home directory (even if you run this command in a directory other
than your home directory).

3 part c
Run your command from 3 part b on nrs-projects -- it should find at least your symbolic link that you created
in 3 part a (and possibly more, depending for example on whether you were the "driver" for the Week 13 Lab
Exercise!)

Note that it should not include your ref-h-commands.txt in its output -- this command will not find hard
links.

For your answer to this part, paste in the result of running ls -l with the full pathname your find
command returns for ref-s-commands.txt.

3 part d
Call wc for ref-h-commands.txt, ref-s-commands.txt, and some-commands.txt, and paste in the
results as the first part of your answer for this part.

Using nano, add the name of at least one additional UNIX/Linux command of your choice to
some-commands.txt and save that change.

Now, again call wc for both ref-commands.txt and some-commands.txt, and paste in the results as the
second part of your answer for this part.

CS 279 - Fall 2022 - Homework 9 p. 2 of 5

3 part a
On nrs-projects, within a directory other than your home directory:

• Create a regular file some-commands.txt whose contents include the names of at least three
UNIX/Linux commands.

• Now create a symbolic/soft link named ref-s-commands.txt that refers to your file
some-commands.txt.

– As long as it is not within your home directory, this symbolic link can be in the same directory or in a
different directory, your choice!

• Now create a hard link named ref-h-commands.txt that refers to your file
some-commands.txt.

– As long as it is not within your home directory, this hard link can be in the same directory or in a
different directory, your choice!

• Write one or more ls -li commands to show the names and i-node numbers for some-commands.txt,
ref-s-commands.txt, and ref-h-commands.txt.

For your answer for this part, paste the results of this/these ls -li commands.

3 part b
Fun fact: We have seen that the find command has an option -type, and when used with d this can be used
to find directories. So, to find and print the names of all directories reachable from the current directory, this
works:
find . -type d -print

It turns out that you can use -type with l (that's an el, not a one) to find symbolic links!

SO: for your answer for this part, write a find command that will find and print the names of all symbolic
links reachable from your nrs-projects home directory (even if you run this command in a directory other
than your home directory).

3 part c
Run your command from 3 part b on nrs-projects -- it should find at least your symbolic link that you created
in 3 part a (and possibly more, depending for example on whether you were the "driver" for the Week 13 Lab
Exercise!)

Note that it should not include your ref-h-commands.txt in its output -- this command will not find hard
links.

For your answer to this part, paste in the result of running ls -l with the full pathname your find
command returns for ref-s-commands.txt.

3 part d
Call wc for ref-h-commands.txt, ref-s-commands.txt, and some-commands.txt, and paste in the
results as the first part of your answer for this part.

Using nano, add the name of at least one additional UNIX/Linux command of your choice to
some-commands.txt and save that change.

Now, again call wc for both ref-commands.txt and some-commands.txt, and paste in the results as the
second part of your answer for this part.

CS 279 - Fall 2022 - Homework 9 p. 3 of 5

3 part e
So -- are symbolic links really used very much in a UNIX/Linux system?

You can find out how many you can reach from nrs-projects' root -- try the following command on nrs-
projects:
find / -type l -print 2> /dev/null | wc -l

Paste its output (the number of lines in its result) as the first part of your answer to this part.

One of these symbolic links is /usr/java/latest.

Paste the result of calling:
ls -l /usr/java/latest

...as the last part of your answer to this part.

Submit your resulting files some-commands.txt and hw9-3.txt .

Problem 4
Create a shell script hw9-functions.sh that contains the following two Bash functions.

• Because it will be included in other shell scripts using source, do not start it with the usual
#!/bin/bash -- but do still include the usual shell-script comment(s)!

4 part a
Hm! It turns out, for all the things that are easy to test in a Bash shell script, testing whether something is an
integer takes a bit of a kluge!

It looks like one approach is to use a regular expression to do this. For our purposes, we in particular would
like a non-negative integer, and we'll assume that it is not to be preceded by a +.

Write a Bash function is_quant that meets the following specifications:

• We'll be discussing the rather odd meaning of return in Bash functions -- and for this function, have it
return the desired exit status. (That is, return 0 or return 1 rather than exit 0 or exit 1)

• We'd like it to "silently" work -- it won't output anything to standard output, it will simply return with an
appropriate exit status.

• if exactly one command-line argument is not given, it returns a non-zero exit status of your choice

• otherwise, it should use a regular expression in an if statement to return an exit status of 0 (success!) if the
input is indeed an (unsigned) integer greater than or equal to 0, and to return a non-zero exit status of your
choice if the input is not.

Note that you can test this by typing something like:
source hw9-functions.sh

is_quant 47

echo $?

...to see what exit status it returned.

4 part b
Remember the overly-trusting function make_line from the Week 13 Lab Exercise?

• "expects a string to repeat and a number of repetitions, and echoes to standard output a single line

CS 279 - Fall 2022 - Homework 9 p. 3 of 5

3 part e
So -- are symbolic links really used very much in a UNIX/Linux system?

You can find out how many you can reach from nrs-projects' root -- try the following command on nrs-
projects:
find / -type l -print 2> /dev/null | wc -l

Paste its output (the number of lines in its result) as the first part of your answer to this part.

One of these symbolic links is /usr/java/latest.

Paste the result of calling:
ls -l /usr/java/latest

...as the last part of your answer to this part.

Submit your resulting files some-commands.txt and hw9-3.txt .

Problem 4
Create a shell script hw9-functions.sh that contains the following two Bash functions.

• Because it will be included in other shell scripts using source, do not start it with the usual
#!/bin/bash -- but do still include the usual shell-script comment(s)!

4 part a
Hm! It turns out, for all the things that are easy to test in a Bash shell script, testing whether something is an
integer takes a bit of a kluge!

It looks like one approach is to use a regular expression to do this. For our purposes, we in particular would
like a non-negative integer, and we'll assume that it is not to be preceded by a +.

Write a Bash function is_quant that meets the following specifications:

• We'll be discussing the rather odd meaning of return in Bash functions -- and for this function, have it
return the desired exit status. (That is, return 0 or return 1 rather than exit 0 or exit 1)

• We'd like it to "silently" work -- it won't output anything to standard output, it will simply return with an
appropriate exit status.

• if exactly one command-line argument is not given, it returns a non-zero exit status of your choice

• otherwise, it should use a regular expression in an if statement to return an exit status of 0 (success!) if the
input is indeed an (unsigned) integer greater than or equal to 0, and to return a non-zero exit status of your
choice if the input is not.

Note that you can test this by typing something like:
source hw9-functions.sh

is_quant 47

echo $?

...to see what exit status it returned.

4 part b
Remember the overly-trusting function make_line from the Week 13 Lab Exercise?

• "expects a string to repeat and a number of repetitions, and echoes to standard output a single line

CS 279 - Fall 2022 - Homework 9 p. 4 of 5

containing that string repeated that many times."

– For example,
make_line Moo 4

...would cause the following to be echoed to the screen:
MooMooMooMoo

Modify your function make_line from the Week 13 Lab Exercise as follows:

• This version should check the number of arguments it is called with, and if it is not called with exactly 2
command-line arguments, it should return a non-zero exit status of your choice.

• This version should also use 4 part a's function is_quant to help it to verify that the second argument is a
non-negative integer, and it should return a non-zero exit status of your choice if it is not.

• Otherwise, it indeed echoes to standard output the desired single line to standard output containing that
string repeated that many times.

Note that you can test this by typing something like:
source hw9-functions.sh

make_line Moo 4

echo $?

make_line Moo Baa

echo $?

...to see its output (if any) and what exit status it returned.

Submit your resulting file hw9-functions.sh.

Problem 5
Create a shell script hw9-test.sh that tests your functions from Problem 4, meeting the following
requirements:

• It should use the source command with hw9-functions.sh to make Problem 4's functions available to
this shell script.

• Test function is_quant:

– Echo that you are about to call is_quant with no arguments, do so, and then echo that call's returned
exit status to the screen in a message of your choice.

– Echo that you are about to call is_quant with more than one argument, do so, and then echo that
call's returned exit status to the screen in a message of your choice.

– Echo that you are about to call is_quant with an unsigned integer, do so, and then echo that call's
returned exit status to the screen in a message of your choice.

– Echo that you are about to call is_quant with an argument that ISN'T an unsigned integer, do so, and
then echo that call's returned exit status to the screen in a message of your choice.

– (if you would like to add additional tests of your is_quant along with the above, that's fine and
encouraged!)

• Test your now-less-trusting function make_line:

CS 279 - Fall 2022 - Homework 9 p. 4 of 5

containing that string repeated that many times."

– For example,
make_line Moo 4

...would cause the following to be echoed to the screen:
MooMooMooMoo

Modify your function make_line from the Week 13 Lab Exercise as follows:

• This version should check the number of arguments it is called with, and if it is not called with exactly 2
command-line arguments, it should return a non-zero exit status of your choice.

• This version should also use 4 part a's function is_quant to help it to verify that the second argument is a
non-negative integer, and it should return a non-zero exit status of your choice if it is not.

• Otherwise, it indeed echoes to standard output the desired single line to standard output containing that
string repeated that many times.

Note that you can test this by typing something like:
source hw9-functions.sh

make_line Moo 4

echo $?

make_line Moo Baa

echo $?

...to see its output (if any) and what exit status it returned.

Submit your resulting file hw9-functions.sh.

Problem 5
Create a shell script hw9-test.sh that tests your functions from Problem 4, meeting the following
requirements:

• It should use the source command with hw9-functions.sh to make Problem 4's functions available to
this shell script.

• Test function is_quant:

– Echo that you are about to call is_quant with no arguments, do so, and then echo that call's returned
exit status to the screen in a message of your choice.

– Echo that you are about to call is_quant with more than one argument, do so, and then echo that
call's returned exit status to the screen in a message of your choice.

– Echo that you are about to call is_quant with an unsigned integer, do so, and then echo that call's
returned exit status to the screen in a message of your choice.

– Echo that you are about to call is_quant with an argument that ISN'T an unsigned integer, do so, and
then echo that call's returned exit status to the screen in a message of your choice.

– (if you would like to add additional tests of your is_quant along with the above, that's fine and
encouraged!)

• Test your now-less-trusting function make_line:

CS 279 - Fall 2022 - Homework 9 p. 5 of 5

– Echo that you are about to call make_line with the wrong number of arguments, do so, and then echo
that call's returned exit status to the screen in a message of your choice.

– Echo that you are about to call make_line with two arguments, but with a NON-number as the second
argument, do so, and then echo that call's returned exit status to the screen in a message of your choice.

– Echo that you are about to call make_line with two GOOD arguments, and then do so -- BUT for this
call, set a VARIABLE to the backquoted result of calling this function with those good arguments, and
then echo the value of that variable afterwards to the screen in a message of your choice.

– (if you would like to add additional tests of your make_line along with the above, that's fine and
encouraged!)

Submit your resulting file hw9-test.sh.

Submit your resulting files:
• some-commands.txt
• hw9-3.txt

• hw9-functions.sh
• hw9-test.sh

CS 279 - Fall 2022 - Homework 9 p. 5 of 5

– Echo that you are about to call make_line with the wrong number of arguments, do so, and then echo
that call's returned exit status to the screen in a message of your choice.

– Echo that you are about to call make_line with two arguments, but with a NON-number as the second
argument, do so, and then echo that call's returned exit status to the screen in a message of your choice.

– Echo that you are about to call make_line with two GOOD arguments, and then do so -- BUT for this
call, set a VARIABLE to the backquoted result of calling this function with those good arguments, and
then echo the value of that variable afterwards to the screen in a message of your choice.

– (if you would like to add additional tests of your make_line along with the above, that's fine and
encouraged!)

Submit your resulting file hw9-test.sh.

Submit your resulting files:
• some-commands.txt
• hw9-3.txt

• hw9-functions.sh
• hw9-test.sh

	Deadline
	Purpose
	How to submit
	Important notes
	Problem 1 - 8 points
	Problem 2 - 8 points
	Problem 3
	3 part a
	3 part b
	find . -type d -print
	3 part c
	3 part d
	3 part e

	Problem 4
	4 part a
	4 part b

	Problem 5

