
CS 279 - Week 13 Lab Exercise p. 1 of 5

CS 279 - Week 13 Lab Exercise

Deadline
Due by the end of lab on 2022-11-17.

How to submit
Submit the files specified below on https://canvas.humboldt.edu.

Purpose
To practice a bit with how to re-run previous commands from a Bash shell's history, with hard and symbolic
links, and with Bash functions.

Important notes
• Work in PAIRS for this lab exercise:

– two people at one computer,
– one typing (driver),
– one saying what to type (navigator),
– both discussing along the way!

When done, the driver should e-mail the files to the navigator, so BOTH of you can EACH submit them.

• Assume, for all bash scripts in this course, that the following are required:

– Start each script (EXCEPT for a script containing JUST Bash functions) with the line that is considered
good style (and is a CS 279 course requirement), that specifies that this script should be executed using
the bash shell

– After a blank line, put in one or more comments including at least the name of the shell script, your
names, and its last modified date

– And follow these comments with a blank line.

Lab Exercise setup
• use ssh to connect to the one of your accounts on nrs-projects.humboldt.edu

• make and protect a directory 279lab13 using the commands:

mkdir 279lab13
chmod 700 279lab13

• go into that directory using:

cd 279lab13

Problem 1
A few additional fun history command bits I'm not sure were mentioned in class this week:

CS 279 - Week 13 Lab Exercise p. 1 of 5

CS 279 - Week 13 Lab Exercise

Deadline
Due by the end of lab on 2022-11-17.

How to submit
Submit the files specified below on https://canvas.humboldt.edu.

Purpose
To practice a bit with how to re-run previous commands from a Bash shell's history, with hard and symbolic
links, and with Bash functions.

Important notes
• Work in PAIRS for this lab exercise:

– two people at one computer,
– one typing (driver),
– one saying what to type (navigator),
– both discussing along the way!

When done, the driver should e-mail the files to the navigator, so BOTH of you can EACH submit them.

• Assume, for all bash scripts in this course, that the following are required:

– Start each script (EXCEPT for a script containing JUST Bash functions) with the line that is considered
good style (and is a CS 279 course requirement), that specifies that this script should be executed using
the bash shell

– After a blank line, put in one or more comments including at least the name of the shell script, your
names, and its last modified date

– And follow these comments with a blank line.

Lab Exercise setup
• use ssh to connect to the one of your accounts on nrs-projects.humboldt.edu

• make and protect a directory 279lab13 using the commands:

mkdir 279lab13
chmod 700 279lab13

• go into that directory using:

cd 279lab13

Problem 1
A few additional fun history command bits I'm not sure were mentioned in class this week:

https://canvas.humboldt.edu/

CS 279 - Week 13 Lab Exercise p. 2 of 5

• If you call history with an integer argument n, it shows the last n commands executed.

• If you type control-r (^R), you can then start typing a previous command, and the shell will attempt to
search through the history and complete it.

In a file lab13-1.txt:

• put your names

• put your answers for each of the following

1 part a
What pair of characters can you type, at any point, to simply re-execute the previous command?

1 part b
What can you type to redo the command with number 46 in the command history?

1 part c
What command can you type to just see the last 7 lines of the command history?

1 part d
What can you type to redo the most recent command starting with grep?

1 part e
What can you type to redo the most recent command including grep anywhere within it? (It might be part
of a piped command, for example.)

1 part f
What can you type to redo the command 6 commands ago?

1 part g
What can you type to redo the immediately preceding command except replacing the first instance of 297 in
that command with 279?

1 part h
What can you type to redo the immediately preceding command except replacing all instances of 297 in that
command with 279?

Submit your resulting lab13-1.txt

Problem 2
You'll play with links a bit in this problem.

• Create a subdirectory lab13-2, make its permissions 700, and cd to it -- I'd like to keep the output files
for this problem uncluttered.

CS 279 - Week 13 Lab Exercise p. 2 of 5

• If you call history with an integer argument n, it shows the last n commands executed.

• If you type control-r (^R), you can then start typing a previous command, and the shell will attempt to
search through the history and complete it.

In a file lab13-1.txt:

• put your names

• put your answers for each of the following

1 part a
What pair of characters can you type, at any point, to simply re-execute the previous command?

1 part b
What can you type to redo the command with number 46 in the command history?

1 part c
What command can you type to just see the last 7 lines of the command history?

1 part d
What can you type to redo the most recent command starting with grep?

1 part e
What can you type to redo the most recent command including grep anywhere within it? (It might be part
of a piped command, for example.)

1 part f
What can you type to redo the command 6 commands ago?

1 part g
What can you type to redo the immediately preceding command except replacing the first instance of 297 in
that command with 279?

1 part h
What can you type to redo the immediately preceding command except replacing all instances of 297 in that
command with 279?

Submit your resulting lab13-1.txt

Problem 2
You'll play with links a bit in this problem.

• Create a subdirectory lab13-2, make its permissions 700, and cd to it -- I'd like to keep the output files
for this problem uncluttered.

CS 279 - Week 13 Lab Exercise p. 3 of 5

• Create a short-but-non-empty text file of your choice in this subdirectory.

• In a file lab13-2.txt:

– put your names

– put the name of the short-but-non-empty text file you just created

– write a command to create a hard link to this short-but-non-empty text file in this subdirectory, and also
run it in this subdirectory

– write a command to create a symbolic/soft link to this short-but-non-empty text file in this
subdirectory, and also run it in this subdirectory

– (this file lab13-2.txt is now ready to submit, along with the files resulting from the steps below)

• Use cat with the name of your short-but-non-empty text file, redirecting the result into a file
lab13-2-part1-orig.txt, so I'll be able to see the original state of the original file you started
with.

• Look at the output of ls -li -- see how the hard link and the symbolic link compare to the text file you
originally linked to. Then do:
ls -li > lab13-2-part2-links.txt

...so I can see that you created these links.

• Use nano with the name of your original short-but-non-empty text file, and noticeably change it in
some fashion.

– Use cat or more to then look at your text file, your hard link, and your symbolic link.

– Then use cat with the names of your text file, your hard link, and your symbolic link as its three
arguments, redirecting the result to lab13-2-part3-chg1.txt

• Use nano with the name of your hard link, and noticeably change it in some fashion.

– Use cat or more to then look at your text file, your hard link, and your symbolic link.

– Then use cat with the names of your text file, your hard link, and your symbolic link as its three
arguments, redirecting the result to lab13-2-part4-chg2.txt

• Use nano with the name of your symbolic link, and noticeably change it in some fashion.

– Use cat or more to then look at your text file, your hard link, and your symbolic link.

– Then use cat with the names of your text file, your hard link, and your symbolic link as its three
arguments, redirecting the result to lab13-2-part5-chg3.txt

• Now, use the rm command to remove your original short-but-non-empty text file.

• Do the command:

ls -li > lab13-2-part6-rm.txt

...so I can see that you removed the original text file.

• Now do the cat command with the name of your hard link, redirecting the result into
lab13-2-part7-hard.txt

And, do the cat command with the name of your symbolic link, redirecting the result using 2> into

CS 279 - Week 13 Lab Exercise p. 3 of 5

• Create a short-but-non-empty text file of your choice in this subdirectory.

• In a file lab13-2.txt:

– put your names

– put the name of the short-but-non-empty text file you just created

– write a command to create a hard link to this short-but-non-empty text file in this subdirectory, and also
run it in this subdirectory

– write a command to create a symbolic/soft link to this short-but-non-empty text file in this
subdirectory, and also run it in this subdirectory

– (this file lab13-2.txt is now ready to submit, along with the files resulting from the steps below)

• Use cat with the name of your short-but-non-empty text file, redirecting the result into a file
lab13-2-part1-orig.txt, so I'll be able to see the original state of the original file you started
with.

• Look at the output of ls -li -- see how the hard link and the symbolic link compare to the text file you
originally linked to. Then do:
ls -li > lab13-2-part2-links.txt

...so I can see that you created these links.

• Use nano with the name of your original short-but-non-empty text file, and noticeably change it in
some fashion.

– Use cat or more to then look at your text file, your hard link, and your symbolic link.

– Then use cat with the names of your text file, your hard link, and your symbolic link as its three
arguments, redirecting the result to lab13-2-part3-chg1.txt

• Use nano with the name of your hard link, and noticeably change it in some fashion.

– Use cat or more to then look at your text file, your hard link, and your symbolic link.

– Then use cat with the names of your text file, your hard link, and your symbolic link as its three
arguments, redirecting the result to lab13-2-part4-chg2.txt

• Use nano with the name of your symbolic link, and noticeably change it in some fashion.

– Use cat or more to then look at your text file, your hard link, and your symbolic link.

– Then use cat with the names of your text file, your hard link, and your symbolic link as its three
arguments, redirecting the result to lab13-2-part5-chg3.txt

• Now, use the rm command to remove your original short-but-non-empty text file.

• Do the command:

ls -li > lab13-2-part6-rm.txt

...so I can see that you removed the original text file.

• Now do the cat command with the name of your hard link, redirecting the result into
lab13-2-part7-hard.txt

And, do the cat command with the name of your symbolic link, redirecting the result using 2> into

CS 279 - Week 13 Lab Exercise p. 4 of 5

lab13-2-part8-soft.txt

(Rhetorical question, that you don't have to turn in an answer for: can you figure out why I asked you to
use 2> for the command involving the symbolic link here? 8-))

• Hmm, that's quite a few files, isn't it?

To more conveniently submit your files for this problem, use tar to create an archive of this subdirectory
lab13-2, use gzip to compress it, and submit your resulting file lab13-2.tar.gz .

Problem 3
Create a shell script lab13-3-functions.sh that contains the following two Bash functions.

• Because it will be included in other shell scripts using source, do not start it with the usual
#!/bin/bash -- but do still include the usual shell-script comment(s)!

• Create a function make_line that expects a string to repeat and a number of repetitions, and echoes to
standard output a single line containing that string repeated that many times. (For today, this can be very
trusting, and assume it is called with two reasonable arguments.)

– For example,

make_line Moo 4

...would cause the following to be echoed to the screen:
MooMooMooMoo

• Fun reminder: For variable $myVar, you can obtain its length using ${#myVar}. (And yes, this does
work with command-line arguments and parameters, fortunately!)

Create a function highlight that expects a string to echo to the screen in an eye-catching way, and,
with the help of make_line, echoes to standard output three lines:

– uses make_line to echo a line of = characters whose length is equal to the length of highlight's
string argument plus 4

– echoes an =, a blank, highlight's string argument, a blank, and an =

– uses make_line to echo another line of = characters whose length is equal to the length of
highlight's string argument plus 4

 (For today, this also can be very trusting, and assume it is called with one reasonable argument.)

– For example,

highlight "CS 279"

...would cause the following to be echoed to the screen:
==========
= CS 279 =
==========

Now create another Bash shell script lab13-3-use.sh that:

• uses the source command with lab13-3-functions.sh

• calls make_line at least three times, each time with a different-but-reasonable pair of arguments

CS 279 - Week 13 Lab Exercise p. 4 of 5

lab13-2-part8-soft.txt

(Rhetorical question, that you don't have to turn in an answer for: can you figure out why I asked you to
use 2> for the command involving the symbolic link here? 8-))

• Hmm, that's quite a few files, isn't it?

To more conveniently submit your files for this problem, use tar to create an archive of this subdirectory
lab13-2, use gzip to compress it, and submit your resulting file lab13-2.tar.gz .

Problem 3
Create a shell script lab13-3-functions.sh that contains the following two Bash functions.

• Because it will be included in other shell scripts using source, do not start it with the usual
#!/bin/bash -- but do still include the usual shell-script comment(s)!

• Create a function make_line that expects a string to repeat and a number of repetitions, and echoes to
standard output a single line containing that string repeated that many times. (For today, this can be very
trusting, and assume it is called with two reasonable arguments.)

– For example,

make_line Moo 4

...would cause the following to be echoed to the screen:
MooMooMooMoo

• Fun reminder: For variable $myVar, you can obtain its length using ${#myVar}. (And yes, this does
work with command-line arguments and parameters, fortunately!)

Create a function highlight that expects a string to echo to the screen in an eye-catching way, and,
with the help of make_line, echoes to standard output three lines:

– uses make_line to echo a line of = characters whose length is equal to the length of highlight's
string argument plus 4

– echoes an =, a blank, highlight's string argument, a blank, and an =

– uses make_line to echo another line of = characters whose length is equal to the length of
highlight's string argument plus 4

 (For today, this also can be very trusting, and assume it is called with one reasonable argument.)

– For example,

highlight "CS 279"

...would cause the following to be echoed to the screen:
==========
= CS 279 =
==========

Now create another Bash shell script lab13-3-use.sh that:

• uses the source command with lab13-3-functions.sh

• calls make_line at least three times, each time with a different-but-reasonable pair of arguments

CS 279 - Week 13 Lab Exercise p. 5 of 5

• calls highlight once, with a string of your choice

• asks the user to enter a desired string, and reads in what they enter

• calls highlight with that entered string

• (and you can do more with these if you wish, also)

Submit your resulting files lab13-3-functions.sh and lab13-3-use.sh .

Submit these files to Canvas:

• lab13-1.txt

• lab13-2.tar.gz

• lab13-3-functions.sh

• lab13-3-use.sh

CS 279 - Week 13 Lab Exercise p. 5 of 5

• calls highlight once, with a string of your choice

• asks the user to enter a desired string, and reads in what they enter

• calls highlight with that entered string

• (and you can do more with these if you wish, also)

Submit your resulting files lab13-3-functions.sh and lab13-3-use.sh .

Submit these files to Canvas:

• lab13-1.txt

• lab13-2.tar.gz

• lab13-3-functions.sh

• lab13-3-use.sh

	Deadline
	How to submit
	Purpose
	Important notes
	Lab Exercise setup
	Problem 1
	1 part a
	1 part b
	1 part c
	1 part d
	1 part e
	1 part f
	1 part g
	1 part h

	Problem 2
	Problem 3

